首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most of the porphyrin-recognition chemistry we have investigated previously has centred on kinetically labile metal-ligand interactions, such as Z-N and Ru-N. Our interest in the broader scope of molecular recognition required a metal with the ability to specifically recognise non-nitrogen-based ligands, with a significantly different binding interaction to distinguish it from nitrogen-based analogues. In this report we describe interactions of Sn(IV) porphyrins that bind oxygen-based ligands and for which the Sn(IV)bond;O bond is in slow exchange on the NMR timescale. A series of carboxylate complexes is employed to highlight the structural/geometric features of porphyrin monomers and cyclic oligomers. Where more than one porphyrin unit is present in a molecular scaffold, we report the effect of carboxylate binding on the complex when the two porphyrins contain different metals (typically Sn(IV) and Zn(II)). The unexpected spectroscopic and structural properties of the Sn(2)(9-anthroic acid)porphyrin dimer are also reported.  相似文献   

2.
The binding interactions in complexes of Zn(+) with nitrogen donor ligands, (N-L) = pyridine (x = 1-4), 4,4'-dipyridyl (x = 1-3), 2,2'-dipyridyl (x = 1-2), and 1,10-phenanthroline (x = 1-2), are examined in detail. The bond dissociation energies (BDEs) for loss of an intact ligand from the Zn(+)(N-L)(x) complexes are reported. Experimental BDEs are obtained from thermochemical analyses of the threshold regions of the collision-induced dissociation cross sections of Zn(+)(N-L)(x) complexes. Density functional theory calculations at the B3LYP/6-31G* level of theory are performed to determine stable structures of these species and to provide molecular parameters needed for the thermochemical analysis of experimental data. Relative stabilities of the various conformations of these N-donor ligands and their complexes to Zn(+) as well as theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) and M06/6-311+G(2d,2p) levels of theory using the B3LYP/6-31G* optimized geometries. The experimental BDEs for the Zn(+)(N-L)(x) complexes are in reasonably good agreement with values derived from density functional theory calculations. BDEs derived from M06 calculations provide better agreement with the measured values than those based on B3LYP calculations. Trends in the sequential BDEs are explained in terms of sp polarization of Zn(+) and repulsive ligand-ligand interactions. Comparisons are made to the analogous Cu(+)(N-L)(x) and Ni(+)(N-L)(x) complexes previously studied.  相似文献   

3.
4.
Devarajan D  Ess DH 《Inorganic chemistry》2012,51(11):6367-6375
Density functional theory and absolutely localized molecular orbital energy decomposition analysis calculations were used to calculate and analyze dihydrogen activation transition states and reaction pathways. Analysis of a variety of transition-metal complexes with d(0), d(6), d(8), and d(10) orbital occupation with a diverse range of metal ligands reveals that for transition states, akin to dihydrogen σ complexes, there is a continuum of activated H-H bond lengths that can be classified as "dihydrogen" (0.8-1.0 ?), "stretched or elongated" (1.0-1.2 ?), and "compressed dihydride" (1.2-1.6 ?). These calculations also quantitatively for the first time reveal that the extent to which H(2) is activated in the transition-structure geometry depends on back-bonding orbital interactions and not forward-bonding orbital interactions. This is true regardless of the mechanism or whether the metal ligand complex acts as an electrophile, ambiphile, or nucleophile toward dihydrogen.  相似文献   

5.
The frontier electronic structures of Ru(tcterpy)(NCS)3 [black dye (BD)] and Ru(dcbpy)2(NCS)(2) (N719) have been investigated by photoelectron spectroscopy (PES), X-ray absorption spectroscopy (XAS) and resonant photoelectron spectroscopy (RPES). N1s XAS has been used to probe the nitrogen contribution in the unoccupied density of states, and PES, together with RPES over the N1s edge, has been used to delineate the character of the occupied density of states. The experimental findings of the frontier electron structure are compared to calculations of the partial density of states for the nitrogens in the different ligands (NCS and terpyridine/bipyridine) and for Ru4d. The result indicates large similarities between the two complexes. Specifically, the valence level spectra show two well separated structures at low binding energy. The experimental results indicate that the outermost structure in the valence region largely has a Ru4d character but with a substantial character also from the NCS ligand. Interestingly, the second lowest structure also has a significant Ru4d character mixed into the structure otherwise dominated by NCS. Comparing the two complexes the BD valence structures lowest in binding energy contains a large contribution from the NCS ligands but almost no contribution from the terpyridine ligands, while for N719 also some contribution from the bipyridine ligands is mixed into the energy levels.  相似文献   

6.
This study probes the nature of noncovalent interactions, such as cation–π, metal ion–lone pair (M–LP), hydrogen bonding (HB), charge‐assisted hydrogen bonding (CAHB), and π–π interactions, using energy decomposition schemes—density functional theory (DFT)–symmetry‐adapted perturbation theory and reduced variational space. Among cation–π complexes, the polarization and electrostatic components are the major contributors to the interaction energy (IE) for metal ion–π complexes, while for onium ion–π complexes ( , , , and ) the dispersion component is prominent. For M–LP complexes, the electrostatic component contributes more to the IE except the dicationic metal ion complexes with H2S and PH3 where the polarization component dominates. Although electrostatic component dominates for the HB and CAHB complexes, dispersion is predominant in π–π complexes.Copyright © 2015 Wiley Periodicals, Inc.  相似文献   

7.
采用从头算方法对SiH4与AB型卤素互化物(ClF、BrF、IF、ICl、IBr、BrCl)形成的复合物的结构特征及本质进行了探讨.在MP2/6-311++G(3d,3p)水平上优化复合物的分子结构,并进行频率验证.通过分子间距离、自然键轨道(NBO)净电荷迁移数及分子图,确认SiH4与卤素互化物形成反转氢键型复合物.在MP2/6-311++G(3d,3p)水平上进行基组重叠误差(BSSE)校正后的作用能为-5.113--9.468kJ·mol-1.用对称匹配微扰理论(SAPT)对作用能进行分解,结果显示,诱导能对总吸引能的贡献在55.0%到72.2%之间,是最主要的贡献部分,静电能和色散能对总吸引能的贡献都小于25.0%.  相似文献   

8.
Isostructural dinuclear Pd and Pt complexes that exhibit unique d(8)-d(8) interactions between dicationic metal centers are reported. These metal-metal interactions are not supported by any bridging ligands and suggest a significant metal-metal bonding character for both Pd and Pt systems.  相似文献   

9.
The molecular recognition of carbohydrates by proteins plays a key role in many biological processes including immune response, pathogen entry into a cell, and cell–cell adhesion (e.g., in cancer metastasis). Carbohydrates interact with proteins mainly through hydrogen bonding, metal-ion-mediated interaction, and non-polar dispersion interactions. The role of dispersion-driven CH–π interactions (stacking) in protein–carbohydrate recognition has been underestimated for a long time considering the polar interactions to be the main forces for saccharide interactions. However, over the last few years it turns out that non-polar interactions are equally important. In this study, we analyzed the CH–π interactions employing bioinformatics (data mining, structural analysis), several experimental (isothermal titration calorimetry (ITC), X-ray crystallography), and computational techniques. The Protein Data Bank (PDB) has been used as a source of structural data. The PDB contains over 12 000 protein complexes with carbohydrates. Stacking interactions are very frequently present in such complexes (about 39 % of identified structures). The calculations and the ITC measurement results suggest that the CH–π stacking contribution to the overall binding energy ranges from 4 up to 8 kcal mol−1. All the results show that the stacking CH–π interactions in protein–carbohydrate complexes can be considered to be a driving force of the binding in such complexes.  相似文献   

10.
Heteropolynuclear Pt(II) complexes with 3,5-diphenylpyrazolate [Pt(2)Ag(4)(μ-Cl)(2)(μ-Ph(2)pz)(6)] (3), [Pt(2)Ag(2)Cl(2)(μ-Ph(2)pz)(4)(Ph(2)pzH)(2)] (4), [Pt(2)Cu(2)Cl(2)(μ-Ph(2)pz)(4)(Ph(2)pzH)(2)] (5), [Pt(2)Ag(4)(μ-Cl)(μ-Me(2)pz)(μ-Ph(2)pz)(6)] (7), and [Pt(2)Ag(4)(μ-Me(2)pz)(2)(μ-Ph(2)pz)(6)] (8) have been prepared and structurally characterized. These complexes are luminescent except for 5 in the solid state at an ambient temperature with emissions of red-orange (3), orange (4), yellow-orange (7), and green (8) light, respectively. Systematic red shift of the emission energies with the number of chloride ligands was observed for 3, 7, and 8. DFT calculations indicate that the highest occupied molecular orbital (HOMO) as well as HOMO-1 of the heterohexanuclear complexes, 3, 7, and 8, having Pt(2)Ag(4) core, mainly consist of dδ orbital of Pt(II) and π orbitals of Ph(2)pz ligands, while the lowest unoccupied molecular orbital (LUMO) of these complexes mainly consists of in-phase combination of 6p of two Pt(II) centers and 5p of four Ag(I) centers. It is likely that the emissions of 3, 7, and 8 are attributed to emissive states derived from the Pt(2)(d)/π → Pt(2)Ag(4) transitions, the emission energy of which depends on the ratio of chloride ligands to pyrazolate ligands.  相似文献   

11.
The coordination of tridentate ligands featuring lateral coordination sites prone to acting as bridging ligands was explored with the aim of obtaining original polymetallic species in a straightforward and controlled manner. Accordingly, the 2-indenylidene chloropalladate [{Ind(Ph(2)P═S)(2)}PdCl](-) was found to behave as a κ(2)-C,S bidentate ligand toward metal fragments, giving access to homo- and heteropolymetallic complexes. X-ray diffraction analyses reveal the presence of short metal-metal contacts in all of these complexes. Density functional theory calculations unambiguously substantiate that the metals engage in unusual d(8)···d(8) interactions with a quasi-perpendicular arrangement of their coordination planes.  相似文献   

12.
The complex formation between fullerene C60 and simple donor molecules such as dimethyl ether, dimethylamine, dimethylsulfide, furan, pyrrole, and thiophene has been studied applying the hybrid MP2/6‐31G(d′):PM3 ONIOM approach for geometry optimization. Local implementation of Møller–Plesset perturbation theory in combination with 6‐31G(d) and 6‐311G(d,p) basis sets was used for binding energies estimation of fullerene complexes. Two factors were found to contribute most to the complex stability: the polarizability and molecular volume of donor molecule. As follows from positive stabilization energies at the Hartree–Fock level, the stabilization of fullerene complexes is entirely due to dispersion interactions in accordance with available experimental data. The calculations show that for donors of similar molecular volume the binding energy of molecular complex increases with polarizability of donor molecules. Similarly, for such complexes the partial charges on molecules increase with decreasing of ionization potentials of donor molecules. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

13.
Breathing crystals based on polymer-chain complexes of Cu(hfac)(2) with nitroxides exhibit thermally and light-induced magnetostructural anomalies in many aspects similar to a spin crossover. In the present work, we report the synthesis and investigation of a new family of Cu(hfac)(2) complexes with tert-butylpyrazolylnitroxides and their nonradical structural analogues. The complexes with paramagnetic ligands clearly exhibit structural rearrangements in the copper(II) coordination units and accompanying magnetic phenomena characteristic for breathing crystals. Contrary to that, their structural analogues with diamagnetic ligands do not undergo rearrangements in the copper(II) coordination environments. This confirms experimentally the crucial role of paramagnetic ligands and exchange interactions between them and copper(II) ions for the origin of magnetostructural anomalies in this family of molecular magnets.  相似文献   

14.
The U-O(yl) triple bonds in the UO(2)(2+) aquo ion are known to be weakened by replacing the first shell water with organic or inorganic ligands. Weakening of the U-O(yl) bond may enhance the reactivity of "yl" oxygens and uranyl(VI) cation-cation interactions. Density functional theory calculations as well as previously published vibrational spectroscopic data have been used to study the origin of the U-O(yl) bond weakening in uranyl(VI) coordination complexes. Natural population analyses (NPA) revealed that the electron localization on the O(yl) 2p orbital is a direct measure of the U-O(yl) bond weakening, indicating that the bond weakening is correlated to the weakening of the U-O(yl) covalent bond and not that of the ionic bond. The Mulliken analysis gives poor results for uranium to ligand electron partitioning and is thus unreliable. Further analyses of molecular orbitals near the highest occupied molecular orbital (HOMO) show that both the σ and π donating abilities of the ligands may account for the U-O(yl) bond weakening. The mechanism of the bond weakening varies with coordinating ligand so that each case needs to be examined independently.  相似文献   

15.
The π–π interactions between benzene and the aromatic nitrogen heterocycles pyridine, pyrimidine, 1,3,5‐triazine, 1,2,3‐triazine, 1,2,4,5‐tetrazine, and 1,2,3,4,5‐pentazine are systematically investigated. The T‐shaped structures of all complexes studied exhibit a contraction of the C? H bond accompanied by a rather large blue shift (40–52 cm?1) of its stretching frequency, and they are almost isoenergetic with the corresponding displaced‐parallel structures at reliable levels of theory. With increasing number of nitrogen atoms in the heterocycle, the geometries, frequencies, energies, percentage of s character at C, and the electron density in the C? H σ antibonding orbital of the complexes all increase or decrease systematically. Decomposition analysis of the total binding energy showed that for all the complexes, the dispersion energy is the dominant attractive contribution, and a rather large attraction originating from electrostatic contribution is compensated by its exchange counterpart.  相似文献   

16.
When 2,4-pentanediol (2,4-H(2)pd) is deprotonated, the resulting dianion (2,4-pd) serves as a type of "hybrid" ligand, i.e., an alkoxide that possesses structural features of a β-diketonate. 2,4-Pentanediol reacts with Al(O-s-Bu)(3) and Zr(O-i-Pr)(4) to form chelated multinuclear complexes. The aluminum-containing product is first isolated as the insoluble [Al(2,4-pd)(2,4-Hpd)](n); on sublimation, a hydrocarbon-soluble mixture of polymetallic species is generated. Mass spectral evidence suggests that both Al(4)(2,4-pd)(6) and Al(5)(2,4-pd)(7)(2,4-Hpd) are present. The zirconium complex is isolated as an adduct, [Zr(2,4-pd)(2)](2)·(2,4-H(2)pd). The pentanediolates decompose on heating to form Al(2)O(3) and ZrO(2). Unlike the mononuclear Al(acac)(3) and Zr(acac)(4) derivatives (acac = acetylacetonate), the formation of aggregates with the 2,4-pd ligand suggests that the latter has more coordinative flexibility. The geometries of several model aluminum complexes with oxygen donor ligands were studied with density functional theory methods. The optimized structures were used with the gauge, including atomic orbital (GIAO) method to calculate their (27)Al NMR magnetic shielding values for comparison with experiment.  相似文献   

17.
Density Functional Theory calculations have been performed for the σ-hydroboryl complexes of iron, ruthenium and osmium [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] (M = Fe, Ru, Os; R = OMe, NMe(2), Ph) at the BP86/TZ2P/ZORA level of theory in order to understand the interactions between metal and HBR ligands. The calculated geometries of the complexes [(H)(2)Cl(PMe(3))(2)Ru(HBNMe(2))], [(H)(2)Cl(PMe(3))(2)Os(HBR)] (R = OMe, NMe(2)) are in excellent agreement with structurally characterized complexes [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))], [(H)(2)Cl(P(i)Pr(3))(2)Os{σ-H-BOCH(2)CH(2)OB(O(2)CH(2)CH(2))}] and [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))]. The longer calculated M-B bond distance in complex [(H)(2)Cl(PMe(3))(2)M(σ-H-BNMe(2))] are due to greater B-N π bonding and as a result, a weaker M-B π-back-bonding. The B-H2 bond distances reveal that (i) iron complexes contain bis(σ-borane) ligand, (ii) ruthenium complexes contain (σ-H-BR) ligands with a stretched B-H2 bond, and (iii) osmium complexes contain hydride (H2) and (σ-H-BR) ligands. The H-BR ligands in osmium complexes are a better trans-directing ligand than the Cl ligand. Values of interaction energy, electrostatic interaction, orbital interaction, and bond dissociation energy for interactions between ionic fragments are very large and may not be consistent with M-(σ-H-BR) bonding. The EDA as well as NBO and AIM analysis suggest that the best bonding model for the M-σ-H-BR interactions in the complexes [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] is the interaction between neutral fragments [(H)(2)Cl(PMe(3))(2)M] and [σ-H-BR]. This becomes evident from the calculated values for the orbital interactions. The electron configuration of the fragments which is shown for C in Fig. 1 experiences the smallest change upon the M-σ-H-BR bond formation. Since model C also requires the least amount of electronic excitation and geometry changes of all models given by the ΔE(prep) values, it is clearly the most appropriate choice of interacting fragments. The π-bonding contribution is 14-22% of the total orbital contribution.  相似文献   

18.
The water/aromatic parallel alignment interactions are interactions where the water molecule or one of its O? H bonds is parallel to the aromatic ring plane. The calculated energies of the interactions are significant, up to ΔECCSD(T)(limit) = ?2.45 kcal mol?1 at large horizontal displacement, out of benzene ring and CH bond region. These interactions are stronger than CH···O water/benzene interactions, but weaker than OH···π interactions. To investigate the nature of water/aromatic parallel alignment interactions, energy decomposition methods, symmetry‐adapted perturbation theory, and extended transition state‐natural orbitals for chemical valence (NOCV), were used. The calculations have shown that, for the complexes at large horizontal displacements, major contribution to interaction energy comes from electrostatic interactions between monomers, and for the complexes at small horizontal displacements, dispersion interactions are dominant binding force. The NOCV‐based analysis has shown that in structures with strong interaction energies charge transfer of the type π → σ*(O? H) between the monomers also exists. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
One Mn or two? The fluorocarbyne manganese carbonyl complexes [Mn(CF)(CO)n] (n=3, 4) and [Mn2(CF)2(CO)n] (n=4–7; see picture) have been investigated by density functional theory. In mononuclear complexes the CF ligand behaves very much like the NO ligand in terms of π‐acceptor strength. In binuclear complexes the two CF ligands couple in many of the low‐energy structures to form a bridging C2F2 ligand derived from difluoroacetylene.

  相似文献   


20.
X-ray structural and spectroscopic properties of a series of heterodinuclear d(8)-d(10) metal complexes [M'M' '(mu-dcpm)(2)(CN)(2)](+) containing d(8) Pt(II), Pd(II), or Ni(II) and d(10) Au(I), Ag(I), or Cu(I) ions with a dcpm bridging ligand have been studied (dcpm = bis(dicyclohexylphosphino)methane; M' = Pt, M' ' = Au 4, Ag 5, Cu, 6; M' ' = Au, M' = Pd 7, Ni 8). X-ray crystal analyses showed that the metal...metal distances in these heteronuclear metal complexes are shorter than the sum of van der Waals radii of the M' and M' ' atoms. The UV-vis absorption spectra of 4-6 display red-shifted intense absorption bands from the absorption spectra of the mononuclear trans-[Pt(phosphine)(2)(CN)(2)] and [M' '(phosphine)(2)](+) counterparts, attributable to metal-metal interactions. The resonance Raman spectra confirmed assignments of (1)[nd(sigma)-->(n + 1)p(sigma)] electronic transitions to the absorption bands at 317 and 331 nm in 4 and 6, respectively. The results of theoretical calculations at the MP2 level reveal an attractive interaction energy curve for the skewed [trans-Pt(PH(3))(2)(CN)(2)-Au(PH(3))(2)(+)] dimer. The interaction energy of Pt(II)-Au(I) was calculated to be ca. 0.45 ev.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号