首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,2′,4-三(2-氯苯基)-5-(3,4-二甲氧基苯基)-4′,5′-二苯基-1,1′-二咪唑(CZ-HABI)是一种高效的光引发剂,其结构通过傅里叶红外光谱仪、核磁共振仪、紫外吸收光谱进行表征.复合引发体系(PI)由光引发剂CZ-HABI、增感剂4,4′-双(二乙氨基)苯甲酮(EMK)、供氢体N-苯基甘氨酸(NPG)组成,利用实时红外(RT-IR)对该复合光引发体系进行了光聚合反应动力学研究,结果表明:在没有供氢体条件下,基本上没有引发效果,增加供氢体后,引发效率大幅增加;增加复合光引发体系用量能提高光聚合反应的双键转化率,且最大聚合速率与[PI]1/2成正比;随着光强的增强,单体的双键转化率与最大反应速率均增大;复合光引发体系引发双丙烯酸酯类单体的最终双键转化率比三丙烯酸酯类单体要高.复合光引发体系的引发效率比ITX/EDAB光引发体系的引发效率高,与1-羟基环己基苯基甲酮(184)、2-羟基-2-甲基-1-苯基-1-丙酮(1173)的引发效果相近.  相似文献   

2.
以对甲氧基苯甲腈和三氯乙腈为原料合成了光引发剂2-(4-甲氧基苯基)-4,6-双(三氯甲基)-S-三嗪(MBTT),通过傅里叶红外光谱仪、核磁共振仪和紫外吸收光谱对所合成的产物结构进行了表征.并利用实时红外(RT-IR)对该引发剂进行了光聚合反应动力学研究,考察了单体、引发剂浓度和光强对引发速率及单体转化率的影响.结果表明,MBTT是一种高效的紫外光引发剂,在引发剂用量为0.1%时光聚合的单体转化率就能达到90%;随着光强的增大,单体的双键转化率和最大反应速率都增大,诱导期缩短;双丙烯酸酯类单体的双键转化率比三丙烯酸酯类单体的双键转化率要高.  相似文献   

3.
以2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮(Irgacure 2959)和全氟辛酰氯(PFOC)为原料合成了光引发剂全氟辛酸-2-[4-(2-羟基-2-甲基丙酰)苯氧基]乙酯(2959-F),利用红外光谱(FT-IR)和核磁共振(19F NMR)对2959-F进行了结构表征;通过紫外吸收光谱测定了2959-F的紫外吸收谱;通过实时红外光谱(RT-IR)对合成的含氟光引发剂进行了光聚合反应动力学研究,考察了光强和引发剂浓度对单体的双键转化率和聚合速率影响,并研究了光引发剂2959-F的抗氧阻聚性能.结果表明:随着光强的增大,单体的双键转化率和聚合速率增加;在一定范围内,引发剂的浓度越高,双键转化率越高,聚合速率越快.2959-F具有较高的双键转化率和较快的聚合速率,并且具有较好的抗氧阻聚性.  相似文献   

4.
利用实时红外对由光引发剂2,2′,5-三(2-氟苯基)-4-(3,4-二甲氧基苯基)-4′,5′-二苯基-1,1′-二咪唑(WJ-HABI)、增感剂4,4—二(N,N′—二甲基氨基)苯甲酮(EMK)及供氢体N-苯基甘氨酸(NPG)组成的复合引发体系进行光聚合动力学研究.探讨了复合引发体系的浓度、不同配比、紫外光的强度及...  相似文献   

5.
用Photo-DSC(光差热扫描)研究了一种可聚合胺助引发剂乙二醇-3-吗啡啉丙酸酯甲基丙烯酸酯(EGMPM)分别与二苯甲酮(BP)、4-(4-甲苯硫基苯基)苯基甲酮(BMS)、4-氯二苯甲酮(CBP)、4-氯甲基二苯甲酮(CMBP)、4-羟甲基二苯甲酮(HMBP)等二芳酮组成的光引发体系引发以1,6-己二醇二丙烯酸酯(HDDA)为单体的紫外光聚合动力学.考察二芳酮质量分数、聚合温度、光照强度对其光聚合动力学影响,并评价其引发效果;同时计算出了EGMPM/BP引发HDDA聚合体系的活化能.结果表明,二芳酮的质量分数增加时,反应达到最大反应速率的时间减少,单体的转化率也相应增加,单体聚合速率相应增大;相同质量分数(0.1%)的不同二芳酮,BMS体系达到最大反应速率的时间最短,单体转化率也最高;随着温度和光强的增加,单体最终转化率、最大反应速率增大,达到最大反应速率所需的时间减少.  相似文献   

6.
采用实时红外技术对所合成的活性稀释剂吡咯烷基-N-甲酸-丙烯酸乙二醇酯的聚合动力学进行了测试.研究了光强、引发剂浓度及引发剂种类对其光聚合的影响.结果表明:光强越强、引发剂浓度越大,聚合速率越高,但是反应的最终双键转化率基本不变,均能达到100%左右.引发剂种类对其光聚合的最终双键转化率的影响不是特别明显,但对聚合速率有一定的影响.  相似文献   

7.
以4-(2,3-环氧丙氧基)二苯甲酮(EBP)和丙烯酸为原料,通过开环反应合成了含有不饱和双键的可聚合光引发剂4-(丙烯酸-2-羟基丙酯-3-氧基)二苯甲酮(AEBP).采用红外光谱(FT-IR)、核磁共振氢谱(1HNMR)对其结构进行表征,利用紫外吸收光谱对AEBP的紫外吸收波长进行表征,通过实时红外(RT-IR)研究了AEBP引发丙烯酸酯单体的光聚合动力学.采用萃取法对比了BP与AEBP引发固化体系后的迁移性.结果表明,随AEBP浓度增加,单体最终转化率增加;当助引发剂N,N-二甲氨基苯甲酸-乙酯(EDAB)浓度为1.2%时,单体最终双键转化率最高;AEBP对双官能度单体的引发效率较之三官能度单体的好;聚合速率随光照强度的增强而变快;固化后AEBP的迁移性比传统的BP大大降低.  相似文献   

8.
以α-羟烷基苯酮(HAPK)、甲苯-2,4-二异氰酸酯(TDI)、聚乙二醇600(PEG600)和丙烯酸-β-羟乙酯(HEA)为原料,通过3步反应,合成了一种可聚合大分子光引发剂:HAPK-TDI-PEG600-TDI-HEA(HTPTH).用IR对反应过程进行了监测.通过Photo-DSC研究了HTPTH引发三丙二醇双丙烯酸酯(TPG-DA)光聚合动力学,考察了光强、引发剂浓度对TPGDA光聚合动力学的影响.结果表明,随着引发剂浓度和光强的增大,最大反应速率对应的转化率、单体最终转化率、最大反应速率都增大,达到最大反应速率所需的时间减小.  相似文献   

9.
以UV-Vis分光光度计法和Photo-DSC法分别研究了合成的3种可聚合胺类助引发剂DMPDA、EGDPM、EGMPM与二苯甲酮(BP)组成的引发体系的光化学初级过程及引发1,6-己二醇二丙烯酸酯(HDDA)的紫外光聚合动力学.考察了助引发剂胺的含量对BP的光化学初级过程和对引发HDDA光聚合动力学的影响,以及光强和温度对聚合动力学的影响.结果表明,随着胺含量的增加,BP的光化学初级反应速率增加,从而使体系的聚合反应速率增加.随着温度和光强的增加,单体最终转化率、最大反应速率增大,达到最大反应速率所需的时间减小.  相似文献   

10.
大分子量二苯甲酮光引发剂的合成及动力学研究   总被引:2,自引:0,他引:2  
以4-羟基二苯甲酮(HBP)、甲苯-2,4-二异氰酸酯(TDI)、4,4′-二羟基二苯甲酮(DHBP)为原料,通过两步反应,合成了一种大分子量二苯甲酮光引发剂:HBP-TDI-DHBP-TDI-HBP(HTDTH).通过实时红外研究了HTDTH的光聚合动力学.结果表明,HTDTH是一种有效的光引发剂.采用HTDTH/胺光引发体系引发二缩三丙二醇二丙烯酸酯(TPGDA)聚合时,随着胺和引发剂浓度的增大,反应速率(Rp)和单体最终转化率(P)同时增大.  相似文献   

11.
三官能度甲基丙烯酰氧基单体的合成与性能研究   总被引:4,自引:3,他引:1  
用甲基丙烯酰氯分别与二乙醇胺和三乙醇胺反应合成了两种三官能度甲基丙烯酰氧基单体.以实时红外光谱(RT-IR)法研究了两种单体的光聚合动力学性质,考察了不同单体、不同引发剂和引发剂浓度、不同光强对聚合性能的影响,并采用动态力学分析仪(DMA)测试了光固化后材料的力学性能.结果表明,随着引发剂浓度的增大,单体转化率、最大反应速率都增大,随着光强的增大,单体转化率、最大反应速率都降低.与二苯甲酮(BP)相比,2-羟基-2-甲基-1-苯基丙酮(1173)对两种单体具有较好的引发效果.两种单体加入三缩四乙二醇双甲基丙烯酸酯(SR209)中后,对体系光固化后的产物力学性能有不同影响.  相似文献   

12.
以实时红外光谱(RT-IR)法研究了合成的4-丙烯酰氧基二苯甲酮(4-ABP)的光聚合动力学性质,考察了不同单体、不同引发剂和助引发剂浓度、不同光强对聚合性能的影响.以萃取法对比研究了4-ABP和二苯甲酮(BP)在固化膜中的的残留量.结果表明,4-ABP是一种非常有效的光引发剂.随着引发剂浓度和光强的增大,单体转化率、最大反应速率都增大,诱导期缩短.萃取实验表明4-ABP在固化膜中的残留量远低于BP.  相似文献   

13.
本文用实时红外光谱研究了4-乙烯基-1-环己烯二环氧化物(TTA22)单体的光聚合性能。分别考察了光引发剂浓度、光源、光强及增感剂浓度对其光聚合性能的影响。选用3,4-环氧环己基甲酸-3′,4′-环氧环己基甲酯(TTA21)作为参照,比较了不同单体的光固化性能。结果表明,随着引发剂浓度以及光强的增加,环氧基转化率及转化速率随之增加。LED光源下单体的转化率和转化速率低于UV汞灯。对TTA22和TTA21光固化后材料的热稳定性进行分析,结果显示TTA21的热稳定性优于TTA22的。  相似文献   

14.
采用配有441.6 nm滤光片的光差示扫描量热仪研究了3,3'-羰基双(7-二乙胺香豆素)(KCD)/N-甲基二乙醇胺(MDEA)/2-(4-甲氧苯基)-4,6-双(三氯甲基)-1,3,5-三嗪(TA)三元引发剂引发丙烯酸酯/液晶复合体系光聚合动力学行为. 结果表明, 在KCD/MDEA复合引发剂中添加TA, 显著提高了丙烯酸酯/液晶复合体系的最大光聚合速率[Rp(max)]和单体转化率, 当TA质量分数为0.5%时, 体系的Rp(max)和单体转化率分别提高了100%和69%. 同时, 随着光照强度的增加, 该体系的Rp(max)和单体转化率呈增大的趋势, 当光强从1.5 mW/cm+2提高到35.2 mW/cm+2时, 其Rp(max)和最终单体转化率分别提高了2.5和2.8倍.  相似文献   

15.
本研究以4-甲氧基苯甲醛和2,4-双(三氯甲基)-6-甲-基1,3,5-三嗪为原料合成了一种引发剂2,4-双(三氯甲基)-6-(4-甲氧基-1-苯乙烯基)-s-三嗪(BMT),并利用红外光谱、紫外光谱、核磁共振等手段对其结构进行表征.利用实时红外光谱研究其光聚合动力学性能,结果表明,不同引发剂浓度,不同单体和不同光强对单体双键转化率都有一定的影响.  相似文献   

16.
采用光差示扫描量热分析,研究了以2, 4, 6-三甲基苯甲酰基-二苯基氧化膦(TPO)为光引发剂、丙烯酸异辛酯(EHA)和三羟甲基丙烷三甲基丙烯酸酯(TMPTA)为单体、液晶为P0616A的丙烯酸酯/液晶复合体系在-40~80℃的光聚合动力学。研究表明:丙烯酸酯/液晶复合体系光聚合的自动加速现象非常显著,聚合反应速率和表观动力学常数在聚合过程中均存在最大值。随着反应温度的提高,体系的最终转化率、最大聚合反应速率(Rpmax)均明显提高,当反应温度高于20℃后,其增长均趋于平缓。随着体系中液晶含量的增加,体系的Rpmax呈下降趋势,体系的聚合反应转化率随时间的增长速率较慢,但是最终转化率差别不大,均接近80%。随着UV光强的增高,体系的Rpmax和最终转化率均明显提高, 体系的阈值光强约为4 mw/cm2。而随着体系平均官能度的增加,体系的Rpmax和最终转化率则呈下降的趋势。  相似文献   

17.
合成了一种可聚合双分子光引发体系——甲基丙烯酸-4-二苯酮甲酯(BPMM)光引发剂和甲基丙烯酸-3,4-亚甲基二氧基苯甲酯(MDBMM)助引发剂.采用含有水平样品支架的实时红外光谱仪(RTIR)监测光聚合动力学,动态力学分析仪(DMA)研究固化膜的机械性能.结果表明,聚合体系的聚合速率(Rp)和最终双键转化率(Pf)随MDBMM浓度的增加而增加,但是,随BPMM的浓度变化出现一最佳值(0.8%);相同的聚合条件下,与传统引发体系相比,BPMM/MDBMM虽然引发活性较差,但是其固化膜的Pf和玻璃化转变温度以及在37℃左右的储能模量与传统引发体系相近,并且MDBMM作为天然可食用植物化学成分衍生物的特点使其有可能适宜于在生物相容性要求较高的领域中应用.  相似文献   

18.
本文利用4-甲基二苯甲酮、哌嗪等原料合成了一种双官能度的单组分光引发剂(MBPPA),其分子结构中具有两个二苯甲酮基团。通过紫外光谱研究了光引发剂的紫外吸收和光降解性能,并利用实时红外测试了光引发剂的光引发活性以及不同单体对光聚合动力学的影响。结果表明,在光照10 min后,MBPPA在257.2 nm处的吸光度降低了18.76%,光降解速度明显高于MBP。当光强为50 mW·cm-2时,0.2%(摩尔分数)MBPPA单独引发乙氧基乙氧基丙烯酸乙酯(EOEOEA)聚合的转化率可达90%。在同等条件下,多官能度丙烯酸酯单体的聚合速率要明显高于单官能度丙烯酸酯单体,但其转化率有所降低。  相似文献   

19.
含硅乙烯基醚单体的合成及光聚合反应   总被引:1,自引:0,他引:1  
本文采用含氯硅烷或硅氧烷与含羟基的单乙烯基醚的取代反应合成了8种含硅乙烯基醚单体,并研究了它们的物理化学性质和光聚合反应过程. 该合成反应过程简单、产率高,是合成含硅乙烯基醚单体的有效方法. 性质研究表明6种单体黏度合适,6种单体热稳定性好;光聚合反应研究表明,随着引发剂浓度(< 2.4wt %时)增加,单体聚合反应速率随之增大. 双官能度的单体在聚合速率和诱导期上表现整体优于单官能度单体. 含硅乙烯基醚单体的固化速率非常快,可以通过增加产酸剂浓度或光强来提高双键转化率.  相似文献   

20.
本文利用实时傅里叶变换红外光谱(real-time FTIR)研究了脂环族环氧单体(CE)在405 nm UV-LED光源下的光聚合动力学。以η6-异丙苯茂铁六氟磷酸盐(I-261)作为阳离子光引发剂,2-异丙基硫杂蒽酮(ITX)、姜黄素(CC)和1-[4-(苯基偶氮)苯基偶氮]-2-萘酚(SudanⅢ)作为光敏剂,探究该茂铁盐体系对CE单体环氧基团转化率及聚合速率的影响。结果表明,尽管所有光敏剂都能有效地引发光聚合,但是ITX和CC体系在405 nm光源的辐照下表现出更高的聚合效率。在8.0%(质量分数)I-261和0.5%ITX条件下,CE的单体转化率从74.4%提高至89%以上,最大聚合速率提高了1.9倍。在8.0%(质量分数)I-261和1.0%CC条件下,CE的单体转化率从74.4%提高至88%以上,最大聚合速率提高了1.7倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号