首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Discrete Mathematics》2022,345(8):112917
Let Φ(G,σ) and Φc(G,σ) denote the flow number and the circular flow number of a flow-admissible signed graph (G,σ), respectively. It is known that Φ(G)=?Φc(G)? for every unsigned graph G. Based on this fact, in 2011 Raspaud and Zhu conjectured that Φ(G,σ)?Φc(G,σ)<1 holds also for every flow-admissible signed graph (G,σ). This conjecture was disproved by Schubert and Steffen using graphs with bridges and vertices of large degree. In this paper we focus on cubic graphs, since they play a crucial role in many open problems in graph theory. For cubic graphs we show that Φ(G,σ)=3 if and only if Φc(G,σ)=3 and if Φ(G,σ){4,5}, then 4Φc(G,σ)Φ(G,σ). We also prove that all pairs of flow number and circular flow number that fulfil these conditions can be achieved in the family of bridgeless cubic graphs and thereby disprove the conjecture of Raspaud and Zhu even for bridgeless signed cubic graphs. Finally, we prove that all currently known flow-admissible graphs without nowhere-zero 5-flow have flow number and circular flow number 6 and propose several conjectures in this area.  相似文献   

2.
Some results on integral sum graphs   总被引:1,自引:0,他引:1  
Wang Yan  Bolian Liu   《Discrete Mathematics》2001,240(1-3):219-229
Let Z denote the set of all integers. The integral sum graph of a finite subset S of Z is the graph (S,E) with vertex set S and edge set E such that for u,vS, uvE if and only if u+vS. A graph G is called an integral sum graph if it is isomorphic to the integral sum graph of some finite subset S of Z. The integral sum number of a given graph G, denoted by ζ(G), is the smallest number of isolated vertices which when added to G result in an integral sum graph. Let x denote the least integer not less than the real x. In this paper, we (i) determine the value of ζ(KnE(Kr)) for r2n/3−1, (ii) obtain a lower bound for ζ(KnE(Kr)) when 2r<2n/3−1 and n5, showing by construction that the bound is sharp when r=2, and (iii) determine the value of ζ(Kr,r) for r2. These results provide partial solutions to two problems posed by Harary (Discrete Math. 124 (1994) 101–108). Finally, we furnish a counterexample to a result on the sum number of Kr,s given by Hartsfiedl and Smyth (Graphs and Matrices, R. Rees (Ed.), Marcel, Dekker, New York, 1992, pp. 205–211).  相似文献   

3.
4.
《Discrete Mathematics》2019,342(4):1028-1037
For a given pair of two graphs (F,H), let R(F,H) be the smallest positive integer r such that for any graph G of order r, either G contains F as a subgraph or the complement of G contains H as a subgraph. Baskoro, Broersma and Surahmat (2005) conjectured that R(F,Kn)=2(n1)+1for n3, where F is the join K1+K2 of K1 and K2. In this paper, we prove that this conjecture is true for the case n=6.  相似文献   

5.
6.
本文主要讨论了子色唯一图的结构,并给出了唯一k-子色图、最大子色图的边临界子色图的特征.  相似文献   

7.
图的倍图与补倍图   总被引:7,自引:0,他引:7  
计算机科学数据库的关系中遇到了可归为倍图或补倍图的参数和哈密顿圈的问题.对简单图C,如果V(D(G)):V(G)∪V(G′)E(D(G))=E(C)∪E(C″)U{vivj′|vi∈V(G),Vj′∈V(G′)且vivj∈E(G))那么,称D(C)是C的倍图,如果V(D(G))=V(C)∪V(G′),E(D(C)):E(C)∪E(G′)∪{vivj′}vi∈V(G),vj′∈V(G’)and vivj∈(G)),称D(C)是G的补倍图,这里G′是G的拷贝.本文研究了D(G)和D的色数,边色数,欧拉性,哈密顿性和提出了D(G) 的边色数是D(G)的最大度等公开问题.  相似文献   

8.
利用抽屉原理,给出了Ramsey数Rm(3)的一个递推公式,得到Rm(3)准确值计算的一个具体表达式,并利用Rm(3)的计算公式给出了Schur数的一个新的上界。  相似文献   

9.
The Ramsey number R(G1,G2) of two graphs G1 and G2 is the least integer p so that either a graph G of order p contains a copy of G1 or its complement Gc contains a copy of G2. In 1973, Burr and Erd?s offered a total of $25 for settling the conjecture that there is a constant c = c(d) so that R(G,G)≤ c|V(G)| for all d‐degenerate graphs G, i.e., the Ramsey numbers grow linearly for d‐degenerate graphs. We show in this paper that the Ramsey numbers grow linearly for degenerate graphs versus some sparser graphs, arrangeable graphs, and crowns for example. This implies that the Ramsey numbers grow linearly for degenerate graphs versus graphs with bounded maximum degree, planar graphs, or graphs without containing any topological minor of a fixed clique, etc. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

10.
11.
For a graph G, it is known to be a hard problem to compute the competition number k(G) of the graph G in general. In this paper, we give an explicit formula for the competition numbers of complete tripartite graphs.  相似文献   

12.
Calculating the crossing number of a given graph is, in general, an elusive problem. Garey and Johnson have proved that the problem of determining the crossing number of an arbitrary graph is NP-complete. The crossing number of a network(graph) is closely related to the minimum layout area required for the implementation of a VLSI circuit for that network. With this important application in mind, it makes most sense to analyze the the crossing number of graphs with good interconnection properties, such as the circulant graphs. In this paper we study the crossing number of the circulant graph C(mk;{1,k}) for m3, k3, give an upper bound of cr(C(mk;{1,k})), and prove that cr(C(3k;{1,k}))=k.Research supported by Chinese Natural Science Foundation  相似文献   

13.
若干图的广义Mycielski图的边色数   总被引:2,自引:1,他引:1  
设图G(V,E)为简单图,V(Mn(G))={v01,v02,…,v0p;v11,v12,…,v1p;…,vn1,vn2,…,vnp}EMn(G))=E(G)∪vijv(i+1)kv0 jv0k∈E(G),1 j,k p,i=0,1,…,n-1称Mn(G)为G的n串广义M ycielsk i图,其中n为自然数,V(G)={v01,v02,…,v0p}.本文得到了路、圈、扇、轮、星图的广义M ycielsk i图的边色数.  相似文献   

14.
15.
The crossing number of Kn is known for n ? 10. We develop several simple counting properties that we shall exploit in showing by computer that cr(K11 = 100, which implies that cr(K12) = 150. We also determine the numbers of non‐isomorphic optimal drawings of K9 and K10. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 128–134, 2007  相似文献   

16.
The circular flow number Φc(G,σ) of a signed graph (G,σ) is the minimum r for which an orientation of (G,σ) admits a circular r-flow. We prove that the circular flow number of a signed graph (G,σ) is equal to the minimum imbalance ratio of an orientation of (G,σ). We then use this result to prove that if G is 4-edge-connected and (G,σ) has a nowhere zero flow, then Φc(G,σ) (as well as Φ(G,σ)) is at most 4. If G is 6-edge-connected and (G,σ) has a nowhere zero flow, then Φc(G,σ) is strictly less than 4.  相似文献   

17.
A Roman domination function on a graph G=(V(G),E(G)) is a function f:V(G)→{0,1,2} satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight of a Roman dominating function is the value f(V(G))=∑uV(G)f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. Cockayne et al. [E. J. Cockayne et al. Roman domination in graphs, Discrete Mathematics 278 (2004) 11-22] showed that γ(G)≤γR(G)≤2γ(G) and defined a graph G to be Roman if γR(G)=2γ(G). In this article, the authors gave several classes of Roman graphs: P3k,P3k+2,C3k,C3k+2 for k≥1, Km,n for min{m,n}≠2, and any graph G with γ(G)=1; In this paper, we research on regular Roman graphs and prove that: (1) the circulant graphs and , n⁄≡1 (mod (2k+1)), (n≠2k) are Roman graphs, (2) the generalized Petersen graphs P(n,2k+1)( (mod 4) and ), P(n,1) (n⁄≡2 (mod 4)), P(n,3) ( (mod 4)) and P(11,3) are Roman graphs, and (3) the Cartesian product graphs are Roman graphs.  相似文献   

18.
It was only recently shown by Shi and Wormald, using the differential equation method to analyze an appropriate algorithm, that a random 5‐regular graph asymptotically almost surely has chromatic number at most 4. Here, we show that the chromatic number of a random 5‐regular graph is asymptotically almost surely equal to 3, provided a certain four‐variable function has a unique maximum at a given point in a bounded domain. We also describe extensive numerical evidence that strongly suggests that the latter condition holds. The proof applies the small subgraph conditioning method to the number of locally rainbow balanced 3‐colorings, where a coloring is balanced if the number of vertices of each color is equal, and locally rainbow if every vertex is adjacent to at least one vertex of each of the other colors. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 157–191, 2009  相似文献   

19.
单而芳  康丽英 《数学进展》2004,33(2):229-235
我们分别用γ(G),β(G)和α(G)表示图G的控制数、匹配数和覆盖数,对任意连通图,有γ(G)≤β(G)≤α(G)成立,1998年,Randerath和Volkmann给出了控制数等于覆盖数的图的特征,本文首先证明了匹配数与控制数相等的图其最小度不超过2,而后给出了最小度为2的图的结构性质。  相似文献   

20.
We present several general results about drawings of , as a beginning to trying to determine its crossing number. As application, we give a complete proof that the crossing number of K9 is 36 and that all drawings in one large, natural class of drawings of K11 have at least 100 crossings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号