首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Molecularly imprinted polymers (MIPs) are synthetic polymers designed to selectively extract target analytes from complex matrices (including biological matrices). The literature shows that MIPs have a degree of cross-selectivity from analytes within the same class of compounds. A commercially available MIP for tobacco-specific nitrosamines (TSNAs) is designed to be class selective for four TSNA compounds. This study sought to characterize the extent of cross-selectivity of the TSNA MIPs with other tobacco alkaloids. Cross-selectivity and recovery of the SupelMIP™ TSNA SPE cartridges was assessed with N-nitrosonornicotine (NNN), nicotine, cotinine and morphine. Their recoveries were compared with the recoveries of a nonimprinted polymer SPE cartridge, and two traditional SPE cartridges: a Waters mixed-mode cation exchange cartridge and a Waters hydrophilic–lipophilic balance cartridge. NNN and cotinine had the highest recoveries with the MIP cartridge, over 80%, and cotinine samples in urine had >80% recoveries. Nicotine had highly variable recoveries, possibly owing to differing chemical properties from the TSNAs. All three analytes had significantly different recoveries with the MIP cartridges compared with the traditional SPE cartridges. Morphine displayed nonspecific interactions with the MIP cartridges. Utilization of the TSNAs’ cross-selectivity allows for simultaneous extraction and identification of multiple tobacco biomarkers using one extraction technique.  相似文献   

2.
分子烙印固相萃取技术克服了传统固相萃取技术选择性差的缺陷,实现了对复杂样品中特定分析对象或杂质的选择性提取,从而大大提高了分析测试的精度和准确性,并降低了检测限。该文对分子烙印聚合物(MIPs)作为固相萃取填料从复杂的环境样品中分离、富集和纯化微量及痕量的目标化合物进行了综述,涉及的目标化合物包括杀虫剂、除草剂、兽药等各类农药残留以及重金属离子和某些生物毒素等。  相似文献   

3.
Three polymers have been synthesised using 4-chlorophenol (4-CP) as the template, following different protocols (non-covalent and semi-covalent) and using different functional co-monomers, 4-vinylpyridine (4-VP) and methacrylic acid (MAA). The polymers were evaluated to check their selectivity as molecularly imprinted polymers (MIPs) in solid-phase extraction (SPE) coupled on-line to liquid chromatography. The solid-phase extraction procedure using MIPs (MISPE), including the clean-up step to remove any interferences, was optimised. The 4-VP non-covalent polymer was the only one which showed a clear imprint effect. This MIP also showed cross-reactivity for the 4-chloro-substituted phenols and for 4-nitrophenol (4-NP) from a mixture containing the 11 priority EPA (Environmental Protection Agency) phenolic compounds and 4-chlorophenol. The MIP was applied to selectively extract the 4-chloro-substituted compounds and 4-NP from river water samples.  相似文献   

4.
Cobb Z  Sellergren B  Andersson LI 《The Analyst》2007,132(12):1262-1271
Two novel molecularly imprinted polymers (MIPs) selected from a combinatorial library of bupivacaine imprinted polymers were used for selective on-line solid-phase extraction of bupivacaine and ropivacaine from human plasma. The MIPs were prepared using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking monomer and in addition hydroxyethylmethacrylate to render the polymer surface hydrophilic. The novel MIPs showed high selectivity for the analytes and required fewer and lower concentrations of additives to suppress non-specific adsorption compared with a conventional MIP. This enabled the development of an on-line system for direct extraction of buffered plasma. Selective extraction was achieved without the use of time-consuming solvent switch steps, and transfer of the analytes from the MIP column to the analytical column was carried out under aqueous conditions fully compatible with reversed-phase LC gradient separation of analyte and internal standard. The MIPs showed excellent aqueous compatibility and yielded extractions with acceptable recovery and high selectivity.  相似文献   

5.
The molecularly imprinted polymers (MIPs) are synthetic polymers possessing specific cavities designed for a target molecule. By a mechanism of molecular recognition, the MIPs are used as selective tools for the development of various analytical techniques such as liquid chromatography, capillary electrochromatography, solid-phase extraction (SPE), binding assays and biosensors. This review describes the application of MIPs to the determination of environmental pollutants in these different analytical approaches with a special emphasis on their potential as selective SPE sorbent for the selective extraction of target analytes from complex matrices.  相似文献   

6.
Two molecularly imprinted polymers (MIPs) that we recently described to be class-selective for glucuronides have been successfully exploited for the molecularly imprinted solid-phase extraction (MISPE) of testosterone glucuronide (TG) from its parent drug (T) in urine. Both sorbents targeted the glucuronate fragment but feature different functional groups for binding the carboxylate anion, MIP1, a neutral 1,3-diarylurea group, and MIP2, a cationic imidazolium functionality. MISPE-HPLC-UV methods developed using both sorbents allowed the extraction of TG from its parent compound in urine samples spiked at 150, 300 or 600 ng mL(-1) for TG and at 50 ng mL(-1) for T. By comparing the performance of the two sorbents it came out that MIP1 is a more suitable SPE packing than MIP2, since it isolated the glucuronide with a higher precision (RSD 2-5%, n = 3) and with an enhanced enrichment factor (EF = 4.2). On the basis of these results, the imprinted receptor MIP1 can be applied for the direct extraction of TG in doping and clinical analysis and to selectively capture any other relevant glucuronated metabolite avoiding tedious deconjugation steps prior to quantification.  相似文献   

7.
Selective sample treatment using molecularly imprinted polymers   总被引:2,自引:0,他引:2  
The molecularly imprinted polymers (MIPs) are synthetic polymers possessing specific cavities designed for a target molecule. By a mechanism of molecular recognition, the MIPs are used as selective sorbents for the solid-phase extraction of target analytes from complex matrices. MIPs are often called synthetic antibodies in comparison with immuno-based sorbents; they offer some advantages including easy, cheap and rapid preparation and high thermal and chemical stability. This review describes the use of MIPs in solid-phase extraction with emphasis on their synthesis, the various parameters affecting the selectivity of the extraction, their potential to selectively extract analytes from complex aqueous samples or organic extracts, their on-line coupling with LC and their potential in miniaturized devices.  相似文献   

8.
This paper describes the preparation and evaluation of molecularly imprinted polymers (MIPs) that display specificity toward diisopropyl methylphosphonate (DIMP) and tributyl phosphate (TBP). Polymer activity was assessed by solid-phase extraction and high-performance liquid chromatography experiments. Both DIMP- and TBP-specific vinylpyridine-based MIPs selectively retained their targets relative to a non-imprinted control. Proof-of-principle experiments demonstrated highly selective analysis of the targets from fortified complex matrix samples (diesel fuel, gasoline, and air extract concentrate). The retained MIP fractions gave near quantitative recovery of the target analytes with very low matrix background content. The same fraction from the control sorbent recovered only about half of the analyte and tended to be less pure.  相似文献   

9.
利用分子印迹技术预处理生物样品中头孢药物的研究   总被引:9,自引:0,他引:9  
黄招发  汤又文 《分析化学》2005,33(10):1424-1426
优化了头孢硫脒分子印迹聚合物的合成条件,探讨了分子印迹技术和固相萃取联用对血浆中头孢硫脒的分离富集,发现用4-乙烯基吡啶作功能单体合成的分子印迹聚合物作为固相萃取填充料,能定量吸附血浆中的头孢硫脒,并初步研究了其吸附机理。  相似文献   

10.
As shown in the past years, SPE based on molecularly imprinted polymers (MIPs) may provide significant enhancement of selectivity in sample preparation and analyte preconcentration. The objective of this work was the fabrication of MIPs for the specific adsorption of rutin and quercetin. The two flavonoids were used as the template molecules for the preparation of MIP phases in a self-assembly (noncovalent) approach. The produced MIPs were validated with regard to the imprinting efficiency as media for LC and SPE. The retention behavior of several flavonoid compounds was studied using as stationary phases imprinted, control nonimprinted polymers, and commercial silica-based materials. MIPs were applied as materials for the selective SPE and preconcentration of the flavonoids from white and red wine, orange juice, and tea. The collected fractions were analyzed by high-pressure LC. MIP-SPE facilitated specific analyte isolation and effective sample clean-up. The results show that molecularly imprinted SPE can be a useful tool for the simple, selective, and cost-effective pretreatment of samples containing natural antioxidants.  相似文献   

11.
Size-exclusion chromatography in 1,1,1,3,3,3-hexafluoro-2-propanol   总被引:1,自引:0,他引:1  
Two molecularly imprinted polymers (MIPs) have been synthesised for the selective extraction of 4-nitrophenol (4-NP) from water samples. One polymer was synthesised via a non-covalent approach and the other via a semi-covalent approach. The selectivity of the polymers for 4-NP was evaluated when these polymers were applied in on-line solid-phase extraction (MISPE) coupled to reversed-phase HPLC. The MISPE conditions for both MIPs were optimised and a clean-up step was included to eliminate non-specific interactions. Differences between the two MIPs were observed with the non-covalent MIP being the more selective of the two, whereas the recoveries were slightly higher for the semi-covalent MIP. The performance of the imprinted polymers in the MISPE of real water samples was also evaluated.  相似文献   

12.
In this paper we describe the synthesis, characterisation and use of two distinct molecularly imprinted polymers (MIPs) prepared using esters of p-hydroxybenzoic acid (parabens) as templates: one MIP was synthesised by precipitation polymerisation using a semi-covalent molecularly imprinting strategy with methyl paraben as the template/target (MIP 1); the second MIP was prepared in monolithic form through a conventional non-covalent molecular imprinting strategy, with butyl paraben as the template (MIP 2). MIP 1 recognized methyl paraben, showed cross-selectivity for other parabens analytes used in the study and higher affinity towards these compounds than did a non-imprinted control polymer. Similarly, MIP 2 demonstrated higher affinity towards paraben analytes than a non-imprinted control polymer.For the analysis of environmental water samples, a solid-phase extraction (SPE) protocol was developed using MIP 2 as sorbent, and results were compared to a SPE using a commercial sorbent (Oasis HLB). With MIP 2 as sorbent and butyl paraben as target, when percolating 500 mL of river water spiked at 1 μg L−1 through the SPE cartridge, and using 1 mL of isopropanol as cleaning solvent, a higher recovery of butyl 4-hydroxybenzoate (butyl paraben) and a cleaner chromatogram where achievable when using the MIP compared to the commercial sorbent.  相似文献   

13.
Molecularly imprinted polymers (MIPs) for benzimidazole compounds have been synthesized by precipitation polymerization using thiabendazole (TBZ) as template, methacrylic acid as functional monomer, ethyleneglycol dimethacrylate (EDMA) and divinylbenzene (DVB) as cross-linkers and a mixture of acetonitrile and toluene as porogen. The experiments carried out by molecularly imprinted solid phase extraction (MISPE) in cartridges demonstrated the imprint effect in both imprinted polymers. MIP–DVB enabled a much higher breakthrough volume than MIP–EDMA, and thus was selected for further experiments. The ability of this MIP for the selective recognition of other benzimidazole compounds (albendazole, benomyl, carbendazim, fenbendazole, flubendazole and fuberidazole) was evaluated. The obtained results revealed the high selectivity of the imprinted polymer towards all the selected benzimidazole compounds.An off-line analytical methodology based on a MISPE procedure has been developed for the determination of benzimidazole compounds in tap, river and well water samples at concentration levels below the legislated maximum concentration levels (MCLs) with quantitative recoveries. Additionally, an on-line preconcentration procedure based on the use of a molecularly imprinted polymer as selective stationary phase in HPLC is proposed as a fast screening method for the evaluation of the presence of benzimidazole compounds in water samples.  相似文献   

14.
Six molecularly imprinted polymers (MIPs) of erythromycin (ERY) were prepared by noncovalent bulk polymerization using methacrylic acid (MAA) as the functional monomer. On the basis of binding analysis, the MIPs with 1:2 optimum ratio of template to MAA were selected for subsequent scanning electron microscopy and Brunauer–Emmett–Teller analyses, which indicated that the MIPs had more convergent porous structures than the nonimprinted polymers. The equilibrium binding experiments showed that the binding sites of MIPs were heterogeneous, with two dissociation constants of 0.005 and 0.63 mg mL−1, respectively. Furthermore, the performance of the MIPs as solid-phase extraction (SPE) sorbents was evaluated, and the selectivity analysis showed that the MIPs could recognize ERY with moderate cross-reactivity for other macrolides. The overall investigation of molecularly imprinted SPE for cleanup and enrichment of the ERY in pig muscle and tap water confirmed the feasibility of utilizing the MIPs obtained as specific SPE sorbents for ERY extraction in real samples. Figure Schematic diagram of the preparation and application of the erythromycin imprinted molecularly imprinted polymers Suquan Song and Aibo Wu contributed equally to this work.  相似文献   

15.
The existence of shape selectivity in non-covalent molecularly imprinted polymers (MIPs) has been proven using molecular probes. Twelve secondary amines with different sized side chains were imprinted, and enantioselectivity evaluated by HPLC for each amine on each imprinted polymer. Trends in the quantitative structure-binding relationships (QSBR) revealed two major contributions of cavity structure on selectivity afforded by molecularly imprinted polymers. First, sterics play a dominant role in cases where a molecules structure is too big too fit into an imprinted site formed from a smaller template molecule; e.g. on MIPs made with small templates, large analytes give separation factors (α) close to 1.0 (no selectivity), while small analytes give α values of 1.4. Second, molecular structures that are equal to or smaller than those of the template molecule are selected by maximizing Van der Waals interactions within the MIP binding site. Thus, MIPs made with large analytes give α values up to 2.5, while small analytes on the same MIPs give α values closer to 1.1. Template structure also has an effect on MIP enantioselectivity; e.g. branched structures exhibit a 1.7-fold improvement in separation factors (α) by MIPs made for isopropyl versus propyl derivatives, and cyclohexyl versus hexyl derivatives. Full details of these trends are provided in the text.  相似文献   

16.
Molecularly imprinted polymers (MIPs) for citrinin (Cit) with 1‐hydroxy‐2‐naphthoic acid (HNA) as mimic template were prepared and the molecularly imprinted SPE method was developed for the detection of Cit in rice with HPLC. The adsorption properties of HNA and Cit on the MIPs and nonimprinted polymers were investigated. It proved that MIPs showed higher selectivity adsorption to HNA and Cit than nonimprinted polymers were. The recoveries of Cit in rice were in the range of 86.7–97.7%. The spiked rice samples and five rice samples in Beijing market were detected using molecularly imprinted SPE method and satisfied results were obtained as discussed in this article.  相似文献   

17.
A novel molecularly imprinted polymer (MIP) monolith for highly selective extraction of cholecystokinin (CCK) neuropeptides was prepared in a micropipette tip. The MIPs were synthesized by epitope imprinting technique and the polymerization conditions were investigated and optimized. The synthesized MIPs were characterized by infrared spectroscopy, elemental analyzer and scanning electron microscope. A molecularly imprinted solid‐phase microextraction (MI‐μ‐SPE) method was developed for the extraction of CCK neuropeptides in aqueous solutions. The parameters affecting MI‐μ‐SPE were optimized. The results indicated that this MIP monolith exhibited specific recognition capability and high enrichment efficiency for CCK neuropeptides. In addition, it showed excellent reusability. This MIP monolith was used for desalting and enrichment of CCK4, CCK5 and CCK8 from human cerebrospinal fluid prior to matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis, and the results show that this MIP monolith can be a useful tool for effective purification and highly selective enrichment of multiple homologous CCK neuropeptides in cerebrospinal fluid simultaneously. By employing MI‐μ‐SPE combined with HPLC‐ESI‐MS/MS analysis, endogenous CCK4 in human cerebrospinal fluid was quantified. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Two different molecularly imprinted polymers (MIPs) were prepared by precipitation polymerization using linuron or isoproturon (phenylurea herbicides) as templates and trifluormethacrylic acid as functional monomer. These materials were used as selective sorbents in the development of molecularly imprinted solid-phase extraction (MISPE) procedures for the determination of several phenylurea herbicides (fenuron, metoxuron, chlortoluron, isoproturon, metobromuron, and linuron) in plant samples extracts. The MISPE procedures were fully optimized and applied to the clean up of selected phenylurea herbicides in carrot, potato, corn, and pea sample extracts and finally determined by HPLC-UV at 244 nm. Although a high degree of clean up was obtained, a decrease of the MIP recognition capabilities was observed in subsequent runs. Thus, a previous clean up protocol based on the use of a non-imprinted polymer was used to prevent the loss of MIP performance and to ease the removal of interferences. Following this procedure, namely two-step MISPE, matrix compounds were almost completely removed by the non-imprinted polymer retaining the ability of MIPs to selectively rebind target analytes unaltered. The developed MISPE procedures allowed the screening of phenylurea herbicides in plant samples at concentration levels required by established European maximum residue limits.  相似文献   

19.
Coumarin, 7-hydroxycoumarin and dicoumarol molecularly imprinted polymers (MIP) were synthesized by bulk polymerization. Methacrylic acid and 4-vinylpyridine were tested as functional monomers and methanol, ethanol, acetonitrile, toluene and chloroform were tested as porogens. The binding capabilities of the imprinted polymers were assessed by equilibrium binding analysis. Highest binding capacity was obtained for MIP prepared for the template 7-hydroxycoumarin synthesized in methacrylic acid as functional monomer, chloroform as porogen and methanol/water as analyte solvent. Scanning electron microscopy analysis documented its appropriate morphology. ATR-FTIR spectra confirmed successful polymerization of MIP. Coumarin structural analogues were employed to evaluate the polymer selectivity and it was found that polymer prepared for 7-hydroxycoumarin was selective for its template molecule. Kinetic studies showed relatively fast adsorption of analytes to MIPs (1 h). Rebinding properties of MIPs were evaluated by adsorption isotherms. The calculated data fitted well with experimental data showing that Freundlich isotherm is suitable for modelling the adsorption of tested coumarins on prepared MIPs. Applicability of polymer prepared for 7-hydroxycoumarin was tested for the selective extraction of coumarins from the sample of chicory.  相似文献   

20.
In this review, the applications of molecularly imprinted polymer (MIP) materials in the area of electrochemical sensors have been explored. The designs of the MIPs containing different polymers, their preparation and their immobilization on the transducer surface have been discussed. Further, the employment of various transducers containing the MIPs based on different electrochemical techniques for determining analytes has been assessed. In addition, the general protocols for getting the electrochemical signal based on the binding ability of analyte with the MIPs have been given. The review ends with describing scope and limitations of the above electrochemical based MIP sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号