首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss the physics potential and the experimental challenges of an upgraded LHC running at an instantaneous luminosity of 1035 cm-2s-1. The detector R&D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are discussed. A few examples of the increased physics potential are given, ranging from precise measurements within the Standard Model (in particular in the Higgs sector) to the discovery reach for several New Physics processes. Received: 25 November 2003, Revised: 21 October 2004, Published online: 18 January 2005 Conveners: F. Gianotti, M.L. Mangano, T. Virdee Contributors: S. Abdullin, G. Azuelos, A. Ball, D. Barberis, A. Belyaev, P. Bloch, M. Bosman, L. Casagrande, D. Cavalli, P. Chumney, S. Cittolin, S.Dasu, A. De Roeck, N. Ellis, P. Farthouat, D. Fournier, J.-B. Hansen, I. Hinchliffe, M. Hohlfeld, M. Huhtinen, K. Jakobs, C. Joram, F. Mazzucato, G.Mikenberg, A. Miagkov, M. Moretti, S. Moretti, T. Niinikoski, A. Nikitenko, A. Nisati, F. Paige, S. Palestini, C.G. Papadopoulos, F. Piccinini, R. Pittau, G. Polesello, E. Richter-Was, P. Sharp, S.R. Slabospitsky, W.H. Smith, S. Stapnes, G. Tonelli, E. Tsesmelis, Z. Usubov, L. Vacavant, J. van der Bij, A. Watson, M. Wielers A. Nikitenko: On leave of absence from ITEP, Moscow, Russia. F. Piccinini: On leave of absence from INFN, Sezione di Pavia, Italy.  相似文献   

2.
The lifetimes of low-lying negative parity yrast levels have been measured in131La using the recoil distance Doppler shift method. The nuclear reaction employed was116Cd+19F at a beam energy of 80 MeV. The data were analysed using the differential decay curve method. The E2 transition strengths for negative parity yrast states and the energy spectra are well described by coupling a fermion to a-soft core in the frame of the interacting boson fermion approximation model.We gratefully acknowledge discussions with R.F. Casten. One of us (N.V.Z.) is grateful to Universität zu Köln for its hospitality. This work was supported by the Bundesministerium für Forschung und Technology — Germany under contract 06OK143 and by Institute of Atomic Physics — Romania under contract 62-91-1.  相似文献   

3.
The azimuthal distributions produced in the intermediate energy40Ar-induced reactions are calculated via the nuclear transport theory. The rotational collective motion is observed from the mid-rapidity particles emission. In addition to the investigation on particle emission in the coordinate space, the momentum distributions of emitted particles as a function of azimuthal angle are also discussed. The azimuthal distributions are fitted by performing Legendre polynomial expansion to second order. By incorporating the fluctuation between the estimated and true reaction plane into our calculations, quantitative agreements with the data are obtained for40Ar+27Al reactions below 85 MeV/nucleon. It is found that the rotation-like behavior becomes stronger with the increasing of the impact parameter and weaker with the increasing of the projectile energy. For40Ar+27Al system at about 85 MeV/nucleon the rotation-like behavior almost vanishes and the mid-rapidity azimuthal distribution tends to be isotropic. For 35 MeV/nucleon40Ar-induced reactions the rotation-like behavior becomes weaker and the out-of-plane enhancement of particle emission appears with the increasing of target mass. The possible origins of these target mass dependent azimuthal distributions at mid-rapidity are discussed.  相似文献   

4.
We report the first measurement of the total charge-loss cross section tot=em+nuc and partial cross sections (for Z=1, 2, ..., 9) of 11.4 A GeV197Au nuclei in various targets. The large Coulomb barrier for Au reduces the electromagnetic contribution em in a Pb target to only 18% of nuc, compared with 70% for 14.5 A GeV28Si and 120% for 200 A GeV32S. With em taken to be Z T 1.8 , nuc can be fitted with nuc=(A P 1/3 +A T 1/3b)2, with b=0.83 and =59 mb, essentially the same as found at energies of 1 to 2 A GeV. Electromagnetic partial cross sections for Z=1 exceed 40 mb in the Pb, Sn, Cu, and Fe targets and are substantial for larger values ofZ in the heavier targets.We are indebted to D. Beavis and the staff of the Alternating Gradient Synchrotron at Brookhaven National Laboratory for producing the beam of 11.4 A GeV Au ions, to D. Snowden-Ifft for his efforts in developing the automated scanning system, and to S. Hirzebruch for a useful discussion. This work was supported in part by the Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics, of the Department of Energy under contract No. DEAC03-76SF00098.  相似文献   

5.
《JETP Letters》2006,84(8):413-417
The results of the experiment on the measurement of the e + e → π+π cross section in a cm energy range of 370–520 MeV are presented. The systematic measurement error is equal to 0.7%. In the vector dominance model, the pion electromagnetic radius is calculated using all the CMD-2 data on the pion form factor. The cross section for the production of a muon pair is measured in the energy range of the experiment. Original Russian Text ? V.M. Aul’chenko, R.R. Akhmetshin, V.Sh. Banzarov, L.M. Barkov, N.S. Bashtovoĭ, D.V. Bondarev, A.E. Bondar’, A.V. Bragin, N.I. Gabyshev, D.A. Gorbachev, A.A. Grebenyuk, D.N. Grigor’ev, S.K. Dhawan, D.A. Epifanov, A.S. Zaĭtsev, S.G. Zverev, F.V. Ignatov, V.F. Kazanin, S.V. Karpov, I.A. Koop, P.P. Krokovny, A.S. Kuz’min, I.B. Logashenko, P.A. Lukin, A.P. Lysenko, A.I. Mil’shteĭn, K.Yu. Mikhaĭlov, I.N. Nesterenko, M.A. Nikulin, A.V. Otboev, V.S. Okhapkin, E.A. Perevedentsev, A.S. Popov, S.I. Redin, B.L. Roberts, N.I. Root, A.A. Ruban, N.M. Ryskulov, A.L. Sibidanov, V.A. Sidorov, A.N. Skrinsky, V.P. Smakhtin, I.G. Snopkov, E.P. Solodov, J.A. Thompson, G.V. Fedotovich, B.I. Khazin, V.W. Hughes, A.G. Shamov, Yu.M. Shatunov, B.A. Shvarts, S.I. éĭdel’man, Yu.V. Yudin, 2006, published in Pis’ma v Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 84, No. 8, pp. 491–495.  相似文献   

6.
The main physical results obtained with the Baikal neutrino telescope NT200 during the period 1998–2003 are reviewed: the limits for the diffuse flux of high-energy neutrinos, high-energy muons, and magnetic monopoles and the results of search for neutrinos from the center of the Earth due to annihilation of weakly interacting massive particles and from local neutrino sources. In April, 2005, the neutrino telescope NT200 was extended by introduction of three new strings, located at a distance of 100 m from the NT200 center. The new deep-water complex NT200+ has an effective volume for detecting cascades from high-energy neutrinos larger than that of NT200 by a factor of 4. At a cascade energy of 10 PeV, the effective volume of the new complex is 107 m3. Further development of the Baikal neutrino experiment is related to the design and fabrication of a detector with a volume of about 1 km3. Original Russian Text ? K.V.Antipin, V.M. Ainutdinov, V.A. Balkanov, I.A. Belolaptikov, D.A. Borshchev, N.M. Budnev, R.V. Vasil’ev, R. Vishnevskii, I.A. Danil’chenko, G.V. Domogatskii, A.A. Doroshenko, A.P. D’yachok, Zh.-A.M. Dzhilkibaev, O.N. Gaponenko, K.V. Golubkov, O.A. Gress, T.I. Gress, O.I. Grishin, V.A. Zhukov, A.M. Klabukov, A.I. Klimov, A.A. Kochanov, K.V. Konishchev, A.P. Koshechkin, L.A. Kuz’michev, V.F. Kulepov, E. Middel, T. Mikokaiskii, M.B. Milenin, R.R. Mirgazov, S.P. Mikheev, E.A. Osipova, G.L. Pan’kov, L.V. Pan’kov, A.I. Panfilov, D.P. Petukhov, E.N. Pliskovskii, P.G. Pokhil, V.A. Poleshchuk, E.G. Popova, V.V. Prosin, M.I. Rozanov, V.Yu. Rubtsov, Yu.A. Semenei, B.A. Tarashchanskii, S.V. Fialkovskii, B.K. Shaibonov, A.A. Sheifler, A.V. Shirokov, K. Spiring, I.V. Yashin, 2007, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2007, Vol. 71, No. 4, pp. 597–601.  相似文献   

7.
This is a summary of the beyond the Standard Model (including model building) working group of the WHEPP-X workshop held at Chennai from January 3 to 15, 2008. Participants: Neelima Agarwal, S K Agarwalla, C S Aulakh, A Belyaev, S S Biswal, B Bhattacharjee, G Bhattacharyya, L Calibbi, D Choudhury, E J Chun, D Das, A De Roeck, N G Deshpande, E Dudas, A Giri, D Grellshceid, R Godbole, S Goswami, M Guchait, M Hirsch, R Kaul, B Kodrani, M C Kumar, A Kundu, Y Mambrini, P Mathews, B Mellado, R Mohanta, S Mohanty, A Nyffeler, S Pakvasa, M K Parida, M Passera, C Petridou, S Poddar, P Poulose, A Rajaraman, G Rajasekaran, V Ravindran, Kumar Rao, D P Roy, Probir Roy, K A Saheb, V H Satheeshkumar, T Schwetz, A Tripathi, R Vaidya and S Vempati  相似文献   

8.
[1]G.T.Bodwin,E.Braaten,and G.P.Lepage,Phys.Rev.D 51 (1995) 1125;[Erratum-ibid.D 55 (1997) 5853][arXiv:hep-ph/9407339]; J.Boltz,P.Kroll,and G.A.Schulre,Phys.Lett.B 392 (1997) 198; J.Boltz,P.Kroll,and G.A.Schulre,Phys.J.C 2 (1998) 705. [2]S.M.Wong,Nucl.Phys.A 674 (2000) 185; S.M.Wong,Eur.Phys.J.C 14 (2000) 643. [3]J.Z.Bai,Y.Ban,J.G.Bian,et al.,Phys.Rev.D 67 (2003)112001. [4]M.Jacob and G.C.Wick,Ann.Phys.7 (1959) 404. [5]S.U.Chung,Phys.Rev.D 48 (1993) 1225; S.U.Chung,Phys.Rev.D 57 (1998) 431; B.S.Zou and D.V.Bugg,Eur.Phys.J.A 16 (2003) 537. [6]Particle Data Group,Phys.Lett.B 592 (2004) pp.924-966. [7]M.A.Doncheski,et al.,Phys.Rev.D 42 (1990) 2293; E.Eichten,et al.,Phys.Rev.D 21 (1980) 203; K.J.Sebastian,Phys.Rev.D 26 (1982) 2295; G.Hardekopf and J.Sucher,Phys.Rev.D 25 (1982) 2938; R.McClary and N.Byers,Phys.Rev.D 28 (1983) 1692; P.Moxhay and J.L.Rosner,Phys.Rev.D 28 (1983) 1132. [8]B.S.Zou and F.Hussain,Phys.Rev.C 67 (2003) 015204.  相似文献   

9.
[1]J. Nagamatsu, N. Nakagava, T. Muranaka, Y. Zenitani,and J. Akimitsu, Nature 410 (2001) 63. [2]C. Buzea and T. Yamashita, Supercond. Sci. Techn. 14(2001) R115. [3]S. Budko, G. Lapertot, C. Petrovic, C.E. Gunningham, N.Anderson, and P.C. Canfield, Phys. Rev. Lett. 86 (2001)1877. [4]H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, and J. Akimitsu, Phys. Rev. Lett. 87 (2001) 127001. [5]J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov,and L.L. Boyer, Phys. Rev. Lett. 87 (2001) 4656. [6]A. Liu, I.I. Mazin, and J. Kortus, Phys. Rev. Lett. 87(2001) 087005. [7]X.K. Chen, M.J. Konstantinovich, J.C. Irwin, D.D.Lawrie, and J.P. Frank, Phys. Rev. Lett. 87 (2001)157002. [8]H. Giublio, D. Roditchev, W. Sacks, R. Lamy, D.X.Thanh, J. Kleins, S. Miraglia, D. Fruchart, J. Markus,and P. Monod, Phys. Rev. Lett. 87 (2001) 177008. [9]F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, and J.D. Jorgensen, Phys. Rev. Lett. 87 (2001) 04700. [10]S.V. Shulga, S.-L. Drechsler, H. Echrig, H. Rosner, and W. Pickett, Cond-mat/0103154 (2001). [11]A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen, Y.Kong, O.K. Andersen, B.J. Gibson, K. Ahn, and R.K.Kremer, J. Phys. Condens. Matter 14 (2002) 1353. [12]H. Doh, M. Sigrist, B.K. Chao, and Sung-Ik Lee, Phys.Rev. Lett. 85 (1999) 5350. [13]I.N. Askerzade, N. Guclu, and A. Gencer, Supercond. Sci.Techn. 15 (2002) L13. [14]I.N. Askerzade, N. Guclu, A. Gencer, and A. Kiliq, Supercond. Sci. Techn. 15 (2002) L17. [15]I.N. Askerzade and A. Gencer, J. Phys. Soc. Jpn. 71(2002) 1637. [16]I.N. Askerzade, Physica C 397 (2003) 99. [17]V.V. Anshukova, B.M. Bulychev, A.I. Golovashkin, L.I.Ivanova, A.A. Minakov, and A.P. Rusakov, Phys. Solid State 45 (2003) 1207. [18]A.A. Abrikosov, Fundamentals of the Theory of Metals,North-Holland, Amsterdam (1988). [19]M.N. Kunchur, S.I. Lee, and W.N. Kang, Phys. Rev. B 68 (2003) 064516.  相似文献   

10.
The longitudinal-momentum distributions of projectile fragments from 0.8 A GeV136Xe and 1 A GeV197Au projectiles impinging on targets of beryllium and aluminium, respectively, have been measured using the projectile-fragment separator FRS at GSI. Different momentum distributions have been found for two different classes of fragmentation processes: the abundant hot fragmentation with several nucleons evaporated from the prefragments, and the rare cold fragmentation with only protons removed from the projectile, but no nucleons evaporated. The data are compared to model calculations.This article comprises part of the Ph.D. thesis of B. Voss  相似文献   

11.
The transmitted energy density in thin single Si crystal, wafers is measured at=1.06 m as a function of the incident energy density for a Nd laser pulse of 30 ns duration. Non-linear effects begin to become important at about 0.3 J/cm2. The contribution due to free-carriers is separated from the interband one by using measurements made at low energy density and at different sample temperatures in the 20°–150 °C range. The time dependence of the free-carrier concentration and of the lattice temperature is computed for different values of the Auger constant. The experimental data in the 0.2–2.5 J/cm2 energy density range are fitted with an Auger constant of 10–30 cm6s–1.Work supported in part by M.P.I. and G.N.S.M.-C.N.R.  相似文献   

12.
Summary We discuss the feasibility of a telescope consisting in a sampling array for extensive air showers measure combined with a muon tracking device. The sampling array will extend over a surface of ≥107 m2 while the muon tracking device will cover ≥104 m2. The telescope should be done with resistive plates counters and would become a very powerful device to study high-energy neutrinos and gamma-ray astronomy as well as cosmicray physics up to the highest energy (≥1019 eV) region. The content of this paper has been elaborated with the following people interested in performing the experiment: M. De Palma, G. Iaselli, C. Maggi, S. Natali, S. Nuzzo, A. Ranieri, C. Raso, F. Romano, F. Ruggeri, G. Selvaggi, P. Tempesta, G. Zito; A. Rossi, G. Susinno; A. Grillo, F. Ronga, V. Valente; P. Bernardini, P. Pistilli; A. Watson, R. Reid, M. Lawrence; M. Ambrosio, G. Barbarino, B. Bartoli, V. Silvestrini; R. Buccheri, M. Carollo, O. Catalano, J. Linsley, L. Scarsi; G. Bressi, A. Lanza, M. Cambiaghi, S. Ratti; M. Bonori, G. D'Agostini; M. De Vincenzi, E. Lamanna, P. Lipari, G. Martellotti, F. Massa, M. Mattioli, A. Nigro, S. Petrera; R. Cardarelli, F. Rossi, R. Santonico; L. De Cesare, G. Grella, M. Guida, F. Mancini, G. Marini, G. Romano, G. Vitiello; C. Cappa, B. D'Ettore Piazzoli, P. Ghia, G. Gomez, P. Trivero. [Bari, Cosenza, Laboratori Nazionali di Frascati Lecce, Leeds, Napoli, Palermo, Pavia, Roma I, Roma II, Salerno, Torino, Istituto di Cosmogeofisica del CNR].  相似文献   

13.
《Physics of Atomic Nuclei》2008,71(12):2101-2109
A spectrometer is created to study relativistic hypernuclei produced with beams of accelerated nuclei from the Nuclotron facility (Dubna, JINR). Test runs have been carried out and the conclusion is drawn that the properties of the facility meet the requirements of the task of searching for unknown and studying poorly known neutron-rich hypernuclei. Original Russian Text ? A.V. Averyanov, S.A. Avramenko, V.D. Aksinenko, M.Kh. Anikina, S.N. Bazylev, V.P. Balandin, Yu.A. Batusov, Yu.A. Belikov, Yu.T. Borzunov, O.V. Borodina, A.I. Golokhvastov, L.B. Golovanov, C. Granja, A.B. Ivanov, Yu.L. Ivanov, A.Yu. Isupov, Z. Kohout, A.M. Korotkova, A.G. Litvinenko, J. Lukstiņš, A.I. Malakhov, L. Majling, O. Majlingova, P.K. Manyakov, V.T. Matyushin, I.I. Migulina, G.P. Nikolaevsky, O.B. Okhrimenko, A.N. Parfenov, N.G. Parfenova, V.F. Peresedov, S.N. Plyashkevich, S. Pospišil, P.A. Rukoyatkin, I.S. Saitov, R.A. Salmin, V.M. Slepnev, I.V. Slepnev, M. Solar, B. Sopko, V. Sopko, E.A. Strokovsky, V.V. Tereshchenko, A.A. Feshchenko, T. Horazdovsky, D. Chren, Yu.A. Chencov, I.P. Yudin, 2008, published in Yadernaya Fizika, 2008, Vol. 71, No. 12, pp. 2137–2145.  相似文献   

14.
In-plane angular correlations between α-particles and projectile residue nuclei (Z=5?22) emerging from 32S+197Au collisions have been measured at 373 MeV incident energy. In the combined Coulomb field of the projectile residue and the target nucleus coincident α-particles are strongly focused into a narrow cone. Model calculations indicate that α-emission originates from the region of the projectile which is facing the target nucleus during the collision.  相似文献   

15.
We present a systematic analysis on the helium projectile fragments produced from 10.6 A GeV197Auemulsion interactions in an experiment conducted at the Brookhaven AGS. Total charge changing and partial production cross-sections are measured experimentally on the basis of helium multiplicity. The multiplicity distribution of helium fragments which are produced collectively obey a KNO scaling. The transverse momentum distribution of these particles indicates that they are produced from two different independent sources.We are thankful to the BNL technical staff and specially to Dr. D. Beavis for his help in the exposure of emulsion stacks. Thanks are due to Profs. Y. Takahashi and G. Romano for their help in the preparation and development of the emulsion stacks. We appreciate the discussions with Prof. H. Stocker and J. Aichelin. This work was supported by D.O.E. under Grant No. DE-FGO2-90ER 40566.  相似文献   

16.
It has recently been shown that growth of a multilayer structure with one or more delta-layers at high temperature leads to spreading and asymmetrization of the dopant distribution [see, for example, E.F.J. Schubert, Vac. Sci. Technol. A. 8, 2980 (1990), A.M. Nazmul, S. Sugahara, M. Tanaka, J. Crystal Growth 251, 303 (2003); R.C. Newman, M.J. Ashwin, M.R. Fahy, L. Hart, S.N. Holmes, C. Roberts, X. Zhang, Phys. Rev. B 54, 8769 (1996); E.F. Schubert, J.M. Kuo, R.F. Kopf, H.S. Luftman, L.C. Hopkins, N.J. Sauer, J. Appl. Phys. 67, 1969 (1990); P.M. Zagwijn, J.F. van der Veen, E. Vlieg, A.H. Reader, D.J. Gravesteijn, J. Appl. Phys. 78, 4933 (1995); W.S. Hobson, S.J. Pearton, E.F. Schubert, G. Cabaniss, Appl. Phys. Lett. 55, 1546 (1989); Delta Doping of Semiconductors, edited by E.F. Schubert (Cambridge University Press, Cambridge, 1996); Yu.N. Drozdov, N.B. Baidus', B.N. Zvonkov, M.N. Drozdov, O.I. Khrykin, V.I. Shashkin, Semiconductors 37, 194 (2003); E. Skuras, A.R. Long, B. Vogele, M.C. Holland, C.R. Stanley, E.A. Johnson, M. van der Burgt, H. Yaguchi, J. Singleton, Phys. Rev. B 59, 10712 (1999); G. Li, C. Jagadish, Solid-State Electronics 41, 1207 (1997)]. In this work analytical and numerical analysis of dopant dynamics in a delta-doped area of a multilayer structure has been accomplished using Fick's second law. Some reasons for asymmetrization of a delta-dopant distribution are illustrated. The spreading of a delta-layer has been estimated using example materials of a multilayer structure, a delta-layer and an overlayer.  相似文献   

17.
[1]J.H. Hamilton,A. VRamayya, W.T. Pinkston, et al.,Phys. Rev. Lett. 32 (1974) 239. [2]R. Julin, K. Helariutta, and M. Muikku, J. Phys. G 27(2001) R109. [3]J.H. Hamilton, Nukleonika 24 (1979) 561. [4]W.C. Ma, et al., Phys. Lett. B 139 (1984) 276. [5]R. Bengtsson, et al., Phys. Lett. B 183 (1987) 1. [6]S. Yoshida and N. Takigawa, Phys. Rev. C 55 (1996)1255. [7]T. Niksic, D. Vretenar, P. Ring, et al., Phys. Rev. C 65(2002) 054320. [8]F.G. Condev, M.P. Carpenter, R.V.F. Janssens, et al.,Phys. Lett. B 528 (2002) 221. [9]D.G. Jenkins, A.N. Andreyev, R.D. Page, et al., Phys.Rev. C 66 (2002) 011301(R). [10]B.D. Serot and J.D. Walecka, Adv. Nuc]. Phys. 16 (1986)1. [11]P. Ring, Prog. Part. Nucl. Phys. 37 (1996) 193. [12]J. Meng and P. Ring, Phys. Rev. Lett. 77 (1996) 3963. [13]J. Meng and P. Ring, Phys. Rev. Lett. 80 (1998) 460. [14]S.K. Patra, S. Yoshida, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1924. [15]S. Yoshida, S.K. Patra, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1938. [16]G.A. Lalazissis and P. Ring, Phys. Lett. B 427 (1998)225. [17]Jun-Qing Li, Zhong-Yu Ma, Bao-Qiu Chen, and Yong Zhou, Phys. Rev. C 65 (2002) 064305. [18]G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 1. [19]G. Audi and A.H. Wapstra, Nucl. Phys. A 595 (1995)409. [20]G. Audi and A.H. Wapstra, Nucl. Phys. A 624 (1997) 1. [21]P. MOller and J.R. Nix, Atom. Data and Nucl. Data Table 59 (1995) 307.  相似文献   

18.
《Pramana》2003,60(5):921-931
The PHOBOS detector has been used to study Au + Au collisions at√sNN = 56,130, and 200 GeV Several global observables have been measured and the results are compared with theoretical models. These observables include the charged-particle multiplicity measured as a function of beam energy, pseudo-rapidity, and centrality of the collision. A unique feature of the PHOBOS detector is its almost complete angular coverage such that these quantities can be studied over a pseudo-rapidity interval of |η|≤5.4. This allows for an almost complete integration of the total charged particle yield, which is found to be about N ch tot = 4200 ±470 at √sNN = 130 GeV and N ch tot = 5300 ±530 at √sNN = 200 GeV. The ratio of anti-particles to particles emitted in the mid-rapidity region has also been measured using the PHOBOS magnetic spectrometer. Of particular interest is the ratio of anti-protons to protons in the mid-rapidity region, which was found to be (i.e.921-1) at √sNN = 130 GeV. This high value suggests that an almost baryon-free region has been produced in the collisions.  相似文献   

19.
[1]V.D.Burkert,Phys.Lett.B 72 (1997) 109. [2]S.Capstick and W.Roberts,Prog.Part.Nucl.Phys.45 (2000) S241,and references therein. [3]B.S.Zou,Nucl.Phys.A 675 (2000) 167c; B.S.Zou,Nucl.Phys.A 684 (2001) 330; BES Collaboration (J.Z.Bai,et al.) Phys.Lett.B 510 (2001) 75; BES Collaboration (M.Ablikim,et al.),hep-ex/0405030. [4]R.Sinha and Susumu Okubo,Phys.Rev.D 30 (1984)2333. [5]W.H.Liang,P.N.Shen,B.S.Zou,and A.Faessler,Euro.Phys.J A 21 (2004) 487. [6]Particle Data Group,Euro.Phys.J.C 15 (2000) 1. [7]K.Tsushima,A.Sibrtsev,and A.W.Thomas,Phys.Lett.B 390 (1997) 29. [8]J.Kogut,Rev.Mod.Phys.51 (1979) 659; Rev.Mod.Phys.55 (1983) 775. [9]Q.Haider and L.C.Liu,J.Phys.G 22 (1996) 1187; L.C.Liu and W.X.Ma,J.Phys.G 26 (2000) L59. [10]V.G.J.Stoks,R.A.M.Klomp,C.P.F.Terheggen,and J.J.de Swart,Phys.Rev.C 49 (1994) 2950. [11]H.Haberzettl,C.Bennhold,T.Mart,and T.Feuster,Phys.Rev.C 58 (1998) R40. [12]Y.Oh,A.I.Titov,and T.-S.H.Lee,Phys.Rev.C 63(2001) 25201.  相似文献   

20.
Excitation functions for the evaporation residues for the reactions12C+93Nb and16O+89Y in the projectile energy range of 4 to 6.5 MeV/amu have been measured using off-line gamma spectrometry. The excitation functions for neutron(xn), proton(pxn) and one alpha(xn) emission channels are practically similar for both the reactions. However the products formed by two alpha(2xn) emission show much higher cross sections in the12C+93Nb than the16O+89Y system. This has been explained in terms of the incomplete fusion process involving transfer of an alpha particle from the projectile to the target in the former case.Authors thank Shri D.C. Ephraim for making the rolled metal foils and the operation crew of PELLETRON facility for their help in carrying out the irradiations. Authors are grateful to Dr. P.R. Natarajan, Head Radiochemistry Division for his keen interest in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号