首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
The Ser, Cys, and His side chains play decisive roles in the syntheses, structures, and functions of proteins and enzymes. For our structural and biomedical investigations of β‐peptides consisting of amino acids with proteinogenic side chains, we needed to have reliable preparative access to the title compounds. The two β3‐homoamino acid derivatives were obtained by Arndt–Eistert methodology from Boc‐His(Ts)‐OH and Fmoc‐Cys(PMB)‐OH (Schemes 2–4), with the side‐chain functional groups' reactivities requiring special precautions. The β2‐homoamino acids were prepared with the help of the chiral oxazolidinone auxiliary DIOZ by diastereoselective aldol additions of suitable Ti‐enolates to formaldehyde (generated in situ from trioxane) and subsequent functional‐group manipulations. These include OH→OtBu etherification (for β2hSer; Schemes 5 and 6), OH→STrt replacement (for β2hCys; Scheme 7), and CH2OH→CH2N3→CH2NH2 transformations (for β2hHis; Schemes 9–11). Including protection/deprotection/re‐protection reactions, it takes up to ten steps to obtain the enantiomerically pure target compounds from commercial precursors. Unsuccessful approaches, pitfalls, and optimization procedures are also discussed. The final products and the intermediate compounds are fully characterized by retention times (tR), melting points, optical rotations, HPLC on chiral columns, IR, 1H‐ and 13C‐NMR spectroscopy, mass spectrometry, elemental analyses, and (in some cases) by X‐ray crystal‐structure analysis.  相似文献   

2.
The reaction behaviour of 1, 3, 5‐triaza‐2σ3λ3‐phosphorin‐4, 6‐dionyloxy‐substituted calix[4]arenes towards mono‐ and binuclear rhodium and platinum complexes was investigated. Special attention was directed to structure and dynamic behaviour of the products in solution and in the solid state. Depending on the molar ratio of the reactands, the reaction of the tetrakis(triazaphosphorindionyloxy)‐substituted calix[4]arene ( 4 ) and its tert‐butyl‐derivative ( 1 ) with [(cod)RhCl]2 yielded the mono‐ and disubstituted binuclear rhodium complexes 2 , 3 , and 5 . In all cases, a C2‐symmetrical structure was proved in solution, apparently caused by a fast intramolecular exchange process between cone conformation and 1, 3‐alternating conformation. The X‐ray crystal structure determination of 5 confirmed [(calixarene)RhCl]2‐coordination through two opposite phosphorus atoms with a P ⃜P separation of 345 pm. The complex displays crystallographic inversion symmetry, and the Rh2Cl2 core is thus exactly planar. Reaction of 1 and of the bis(triazaphosphorindionyloxy)‐bis(methoxy)‐substituted tert‐butyl‐calix‐[4]arene ( 7 ) with (cod)Rh(acac) in equimolar ratio and subsequent reaction with HBF4 led to the expected cationic monorhodium complexes 5 and 8 , involving 1, 3‐alternating P‐Rh‐P‐coordination. The cone conformation in solution was proved by NMR spectroscopy and characteristic values of the 1J(PRh) coupling constants in the 31P‐NMR‐spectra. Reaction of equimolar amounts of 4 with (cod)Rh(acac) or (nbd)Rh(acac) led, by substitution of the labile coordinated acetylacetonato and after addition of HBF4, to the corresponding mononuclear cationic complexes 9 and 10 . Only two of the four phosphorus atoms in 9 and 10 are coordinated to the central metal atom. Displacement of either cycloocta‐1, 5‐diene or norbornadiene was not observed. For both compounds, the cone conformation was proved by NMR spectroscopy. Reaction of 4 with (cod)PtCl2 led to the PtCl2‐complex ( 11 ). As for all compounds mentioned above, only two phosphorus atoms of the ligand coordinate to platinum, while two phosphorus atoms remain uncoordinated (proved by δ31P and characteristic values of 1J(PPt)). NMR‐spectroscopic evidence was found for the existence of the cone conformation in the cis‐configuration of 11 .  相似文献   

3.
5‐Bromo[5,5‐dibromo]‐1,1,1‐trihalo‐4‐methoxy‐3‐penten[hexen]‐2‐ones are explored as precursors to the synthesis of 3‐ethoxymethyl‐5‐trifluoromethyl‐1H‐pyrazoles from a cyclocondensation reaction with hydrazine monohydrate in ethanol. 3‐Ethoxymethyl‐carboxyethyl ester pyrazoles were formed as a result of a substitution reaction of bromine and chlorine by ethanol. The dibrominated precursor furnished 3‐acetal‐pyrazole that was easily hydrolyzed to formyl group. In addition, brominated precursors were used in a nucleophilic substitution reaction with sodium azide to synthesize the 3‐azidomethyl‐5‐ethoxycarbonyl‐1H‐pyrazole from the reaction with hydrazine monohydrate. These products were submitted to a cycloaddition reaction with phenyl acetylene furnishing the 3‐[4(5)‐phenyl‐1,2,3‐triazolyl]5‐ ethoxycarbonyl‐1H‐pyrazoles and to reduction conditions resulting in 3‐aminomethyl‐1H‐pyrazole‐5‐carboxyethyl ester. The products were obtained by a simple methodology and in moderate to good yields.  相似文献   

4.
3‐Deoxy‐3‐fluoro‐d ‐glucopyranose crystallizes from acetone to give a unit cell containing two crystallographically independent molecules. One of these molecules (at site A) is structurally homogeneous and corresponds to 3‐deoxy‐3‐fluoro‐β‐d ‐glucopyranose, C6H11FO5, (I). The second molecule (at site B) is structurally heterogeneous and corresponds to a mixture of (I) and 3‐deoxy‐3‐fluoro‐α‐d ‐glucopyranose, (II); treatment of the diffraction data using partial‐occupancy oxygen at the anomeric center gave a high‐quality packing model with an occupancy ratio of 0.84:0.16 for (II):(I) at site B. The mixture of α‐ and β‐anomers at site B appears to be accommodated in the lattice because hydrogen‐bonding partners are present to hydrogen bond to the anomeric OH group in either an axial or equatorial orientation. Cremer–Pople analysis of (I) and (II) shows the pyranosyl ring of (II) to be slightly more distorted than that of (I) [θ(I) = 3.85 (15)° and θ(II) = 6.35 (16)°], but the general direction of distortion is similar in both structures [ϕ(I) = 67 (2)° (BC1,C4) and ϕ(II) = 26.0 (15)° (C3TBC1); B = boat conformation and TB = twist‐boat conformation]. The exocyclic hydroxymethyl (–CH2OH) conformation is gg (gauchegauche) (H5 anti to O6) in both (I) and (II). Structural comparisons of (I) and (II) to related unsubstituted, deoxy and fluorine‐substituted monosaccharides show that the gluco ring can assume a wide range of distorted chair structures in the crystalline state depending on ring substitution patterns.  相似文献   

5.
The stereochemistries at positions 2 and 3 of the title compounds, C15H21BrClNO, (I), and C15H12BrClN2O3, (II), have been confirmed by X‐ray structural analysis. The halogen atoms adopt an antiperiplanar arrangement in each case.  相似文献   

6.
A concise protocol for the synthesis of α‐methylene‐β‐hydroxy‐γ‐carboxy‐γ‐lactams has been described via alkylation of amino acid derived iminoesters with α‐bromomethylmethacrylate, followed by allylic hydroxylation. All the synthesized compounds have been evaluated for their cytotoxicity on multiple myeloma cancer cell lines.  相似文献   

7.
8.
(2S,3S)‐2,6‐Dimethylheptane‐1,3‐diol, C9H20O2, (I), was synthesized from the ketone (R)‐4‐benzyl‐3‐[(2R,3S)‐3‐hydroxy‐2,6‐dimethylheptanoyl]‐1,3‐oxazolidin‐2‐one, C19H27NO4, (II), containing C atoms of known chirality. In both structures, strong hydrogen bonds between the hydroxy groups form tape motifs. The contribution from weaker C—H...O hydrogen bonds is much more evident in the structure of (II), which furthermore contains an example of a direct short Osp3...Csp2 contact that represents a usually unrecognized type of intermolecular interaction.  相似文献   

9.
Crystal Structures and Spectroscopic Properties of 2λ3‐Phospha‐1, 3‐dionates and 1, 3‐Dionates of Calcium ‐ Comparative Studies on the 1, 3‐Diphenyl and 1, 3‐Di(tert‐butyl) Derivatives A hydrogen‐metal exchange between dibenzoylphosphane and calcium carbide in tetrahydrofuran (THF) followed by addition of the ligand 1, 3, 5‐trimethyl‐1, 3, 5‐triazinane (TMTA) furnishes the binuclear complex bis[(tmta‐N, N′, N″)calcium bis(dibenzoylphosphanide)] ( 1a ) co‐crystallizing with benzene. Similarly, reaction of bis(2, 2‐dimethylpropionyl)phosphane with bis(thf‐O)calcium bis[bis(trimethylsilyl)amide] in 1, 2‐dimethoxyethane (DME) gives bis(dme‐O, O′)calcium bis[bis(2, 2‐dimethylpropionyl)phosphanide] ( 1b ) in high yield. The carbon analogues 1, 3‐diphenylpropane‐1, 3‐dione (dibenzoylmethane) or 2, 2, 6, 6‐tetramethylheptane‐3, 5‐dione (dipivaloylmethane) and bis(thf‐O)calcium bis[tris(trimethylsilylmethyl)zincate] in DME afford bis(dme‐O, O′)calcium bis(dibenzoylmethanide) ( 2a ) and the binuclear complex (μ‐dme‐O, O′)bis[(dme‐O, O′)calcium bis(dipivaloylmethanide)] ( 2b ), respectively. Dialkylzinc formed during the metalation reaction shows no reactivity towards the 1, 3‐dionates 2a and 2b . Finally, from the reaction of the unsymmetrically substituted ligand 2‐(methoxycarbonyl)cyclopentanone and bis(thf‐O)calcium bis[bis(trimethylsilyl)amide] in toluene, the trinuclear complex 3 is obtained, co‐crystallizing with THF. The β‐ketoester anion bridges solely via the cyclopentanone unit.  相似文献   

10.
We isolated α‐chitin, β‐chitin, and γ‐chitin from natural resources by a chemical method to investigate the crystalline structure of chitin. Its characteristics were identified with Fourier transform infrared (FTIR) and solid‐state cross‐polarization/magic‐angle‐spinning (CP–MAS) 13C NMR spectrophotometers. The average molecular weights of α‐chitin, β‐chitin, and γ‐chitin, calculated with the relative viscosity, were about 701, 612, and 524 kDa, respectively. In the FTIR spectra, α‐chitin, β‐chitin, and γ‐chitin showed a doublet, a singlet, and a semidoublet at the amide I band, respectively. The solid‐state CP–MAS 13C NMR spectra revealed that α‐chitin was sharply resolved around 73 and 75 ppm and that β‐chitin had a singlet around 74 ppm. For γ‐chitin, two signals appeared around 73 and 75 ppm. From the X‐ray diffraction results, α‐chitin was observed to have four crystalline reflections at 9.6, 19.6, 21.1, and 23.7 by the crystalline structure. Also, β‐chitin was observed to have two crystalline reflections at 9.1 and 20.3 by the crystalline structure. γ‐Chitin, having an antiparallel and parallel structure, was similar in its X‐ray diffraction patterns to α‐chitin. The exothermic peaks of α‐chitin, β‐chitin, and γ‐chitin appeared at 330, 230, and 310, respectively. The thermal decomposition activation energies of α‐chitin, β‐chitin, and γ‐chitin, calculated by thermogravimetric analysis, were 60.56, 58.16, and 59.26 kJ mol?1, respectively. With the Arrhenius law, ln β was plotted against the reciprocal of the maximum decomposition temperature as a straight line; there was a large slope for large activation energies and a small slope for small activation energies. α‐Chitin with high activation energies was very temperature‐sensitive; β‐Chitin with low activation energies was relatively temperature‐insensitive. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3423–3432, 2004  相似文献   

11.
12.
A concise synthesis of α‐benzylidene‐γ‐methyl‐γ‐butyrolactones 5a – g from substituted benzaldehydes is described. Compounds 1a – g on reaction with phosphorane 2 , provide the pentenoates 3a – g , which can be hydrolyzed to the acids 4a – g . The latter are cyclized to the corresponding butyrolactones 5a – g in excellent yields. The pentenoates 3a – g , on acid catalyzed cyclization, also provide 5a – g in very high yields.  相似文献   

13.
The mol­ecule of the title compound, C16H21NO4, is chiral and has three asymmetric centres. The absolute configuration was not determined via diffraction measurements on the crystal, but was established from the known absolute configuration of the starting material. In the crystal structure, the mol­ecules assemble through inter­molecular hydrogen bonds into a macrostructure with helical channels.  相似文献   

14.
15.
16.
The asymmetric unit of the title polymeric complex, [HgBr(C6H4NO2)]n or HgBr(nic), contains mercury coordinated via two Br atoms [Hg—Br = 2.6528 (9) and 2.6468 (9) Å], two carboxyl­ate O atoms, which form a characteristic four‐membered chelate ring [Hg—O = 2.353 (6) and 2.478 (7) Å], and an N atom [Hg—N = 2.265 (5) Å], in the form of a very irregular (3+2)‐coordination polyhedron. The pronounced irregularity of the effective Hg (3+2)‐coordination is a result of the rigid stereochemistry of the nicotinate ligand. According to the covalent and van der Waals radii criteria, the strongest bonds are Hg—Br and Hg—N. These covalent interactions form a two‐dimensional poly­mer. The puckered planes are connected by van der Waals interactions, and there are only two intermolecular C—H⋯O hydrogen bonds [3.428 (10) and 3.170 (10) Å].  相似文献   

17.
This study describes, for the first time, the generation of a SF5‐substituted ester enolate from benzyl SF5‐acetate under soft enolization conditions, which in turn participates in aldol addition reactions in high yield. The reaction was applied in the synthesis of 3‐SF5‐quinolin‐2‐ones, 3‐SF5‐quinolines, and 3‐SF5‐pyridin‐2‐ones, none of which have previously been reported. To provide guidelines for their use in drug discovery, the physicochemical properties of these building blocks were determined and compared with those of their CF3‐ and t‐Bu‐analogues.  相似文献   

18.
This study describes, for the first time, the generation of a SF5‐substituted ester enolate from benzyl SF5‐acetate under soft enolization conditions, which in turn participates in aldol addition reactions in high yield. The reaction was applied in the synthesis of 3‐SF5‐quinolin‐2‐ones, 3‐SF5‐quinolines, and 3‐SF5‐pyridin‐2‐ones, none of which have previously been reported. To provide guidelines for their use in drug discovery, the physicochemical properties of these building blocks were determined and compared with those of their CF3‐ and t‐Bu‐analogues.  相似文献   

19.
The title compound, [La2(C8H3NO6)2(C8H4NO6)2(H2O)6]·2H2O, consists of dimeric units related by an inversion center. The two LaIII atoms are linked by two bridging bidentate carboxyl­ate groups and two monodentate carboxyl­ate groups. Each LaIII atom is nine‐coordinated by six O atoms from five different carboxyl­ate groups and three from water mol­ecules. Hydrogen bonds between the water mol­ecules and between the solvent water and a carboxyl­ate O atom are observed in the structure. In the crystal packing, there are slipped π–π stacking inter­actions between the parallel benzene rings. Both hydrogen‐bonding and π–π inter­actions combine to stabilize the three‐dimensional supra­molecular network.  相似文献   

20.
3‐Oxo‐N‐[4‐(3‐oxo‐3‐phenylpropionylamino)‐phenyl]‐3‐phenylpropionamide 1 and its derivative 2‐benzoyl‐N‐[4‐(2‐benzoyl‐3‐(dimethylamino‐acryloylamino)‐phenyl]‐3‐dimethylaminoacrylamide 12 are used for the synthesis of the hitherto not known bis‐heterocyclic amine and bis‐heterocyclic carboxamide derivatives. Plausible mechanisms are discussed for the formation of the new compounds. J. Heterocyclic Chem., (2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号