首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Effects of Mn substitution for Co and Fe on the structural and magnetic properties of inverse-spinel CoFe2O4 have been investigated. MnxCo1−xFe2O4 and MnyCoFe2−yO4 thin films were prepared by a sol–gel method. The observed increase of the lattice constant of MnxCo1−xFe2O4 indicates that Mn2+ ions substitute the octahedral Co2+ sites. Conversion electron Mössbauer spectroscopy data indicate that a fraction of octahedral Co2+ ions exchange sites with tetrahedral Fe3+ ions through Mn doping. Vibrating-sample magnetometry data exhibit a large increase of saturation magnetization for both MnxCo1−xFe2O4 and MnyCoFe2−yO4 films compared to that of the CoFe2O4 film. Such enhancement of magnetization can be explained in terms of a breaking of ferrimagnetic order induced by the Co2+ migration.  相似文献   

2.
Optical transitions in normal-spinel Co3O4 have been identified by investigating the variation of its optical absorption spectrum with the replacement of Co by Zn. Three optical-transition structures were located at about 1.65, 2.4, and 2.8 eV from the measured dielectric function of Co3O4 by spectroscopic ellipsometry. The variation of the absorption structures with the Zn substitution (ZnxCo3−xO4) can be explained in terms of charge-transfer transitions involving d states of Co ions. The 1.65 eV structure is assigned to a d-d charge-transfer transition between the t2g states of octahedral Co3+ ion and t2 states of tetrahedral Co2+ ion, t2g(Co3+)→t2(Co2+). The 2.4 and 2.8 eV structures are interpreted as due to charge-transfer transitions involving the p states of O2− ion: p(O2−)→t2(Co2+) for the 2.4 eV absorption and p(O2−)→eg(Co3+) for the 2.8 eV absorption. The observed gradual reduction of the 1.65 and 2.4 eV absorption strength with the increase of the Zn composition for ZnxCo3−xO4 can be explained in terms of the substitution of the tetrahedral Co2+ sites by Zn2+ ions. The crystal-field splitting ΔOh between the eg and the t2g states of the octahedral Co3+ ion is estimated to be 2 eV.  相似文献   

3.
本文制备了用于费托合成反应的钴改性Fe3O4-MnO2双功能催化剂,并探究了钴负载量对Fe-Co协同效应的影响以及Fe1CoxMn1催化剂的费托合成反应性能. 实验发现,在Fe3O4-Mn催化剂中加入Co可促进铁氧化物的还原、增加反应过程中铁位点的活性. 此外,Co的加入可增强Fe-Co金属间的电子转移,加强两者的协同作用,提高催化性能. Co负载较高的Fe1CoxMn1催化剂可进一步促进加氢反应能力,使产品分布向短链烃方向转移. 在280 °C、2.0 MPa和3000 h-1的最佳工况条件下,Fe1Co1Mn1催化剂的液体燃料收率最高.  相似文献   

4.
As in magnetite Fe3O4, calcium ferrite CaFe3O5 is an oxide in which electron transfer occurs between the iron ions (Fe3+Fe2+ = 2). This intervalence exchange process has been studied by 57Fe Mössbauer spectroscopy and by electrical conductivity measurements. In CaFe3O5, the Fe3+ and Fe2+ ions occupy different crystallographic sites and have a deformed octahedral coordination. Each Fe2+O6 octahedron shares an edge with two Fe3+O6 octahedra. In the antiferromagnetic region (TN = 282 ± 2 K), the Fe3+ and Fe2+ ions are well differentiated. Thermally-activated electron transfer is observed above tn, in the paramagnetic region and is well characterized by the Mössbauer spectra. These are analyzed using the hypothesis of an electron jump limited to a trimer Fe3+Fe2+Fe3+ which leads to a relaxation time of 180 ns at 298 K and 80 ns at 400 K. Within this temperature interval, the process follows the Arrhenius law with an activation energy of 0.10 eV. Electrical conductivity measurements lead to similar results with an activation energy of 0.09 ± 0.02 eV.  相似文献   

5.
Specific heat data on the random mixtures FepCo1-pL6(ClO4)2, where L = C5H5NO, are presented. The Fe and Co magnetic atoms have competing anisotropies since the pure Fe and Co compounds are known to be good examples of the simple cubic, S = 12, Ising and XY magnet, respectively. The experimental data show the two magnetic subsystems in the mixtures to be almost completely decoupled, which is a consequence of the fact that the crystal field anisotropies of the Fe2+ and Co2+ ions, yielding g ? g and g ? g, respectively, are very strong compared to the magnetic exchange interactions. Consequently the two magnetic subsystems experience one another as nonmagnetic impurities. A model is presented which explains these results, as well as those previously found for related random mixtures, in terms of two interpenetrating percolation clusters.  相似文献   

6.
Mössbauer spectroscopy was used to follow the hyperfine field at 57Fe nuclei in amorphous Fe2O3. The value of Hhf at T = 0, 470 kG, indicates J = 52 for the Fe ions, while the reduced hyperfine field versus reduced temperature closely follows a J = 12 Brillouin function. This result is at variance with theoretical predictions for a spin glass and is also different from amorphous metals with a high content of magnetic ions as reported in the literature. Paramagnetic Mössbauer spectra of amorphous mixed oxides of Fe2O3 with ZnO and CoO show that the 57Fe nuclei in all amorphous ferric oxides studied so far are coordinated in a manner similar to the d site in β F2O3, and distinctly different from the coordination in their crystalline form.  相似文献   

7.
The spinel CoFe2O4 has been synthesized by combustion reaction technique. X-ray photoelectron spectroscopy shows that samples are near-stoichiometric, and that the specimen surface both in the powder and bulk sample is most typically represented by the formula (Co0.4Fe0.6)[Co0.6Fe1.4]O4, where cations in parentheses occupy tetrahedral sites and those within square brackets in octahedral sites. The results demonstrate that most of the iron ions are trivalent, but some Fe2+ may be present in the powder sample. The Co 2p3/2 peak in powder sample composed three peaks with relative intensity of 45%, 40% and 15%, attributes to Co2+ in octahedral sites, tetrahedral sites and Co3+ in octahedral sites. The O 1s spectrum of the bulk sample is composed of two peaks: the main lattice peak at 529.90 eV, and a component at 531.53 eV, which is believed to be intrinsic to the sample surface. However, the vanishing of the O 1s shoulder peak of the powder specimen shows significant signs of decomposition.  相似文献   

8.
Highly coercive magnetic powder was obtained by growing cobalt ferrite on the surface of γ-Fe2O3 particles in highly alkaline suspensions containing cobalt and ferrous ions in a Co/Fe molar ratio = 12. The mechanism of the growth and the structure of cobalt ferrite on γ-Fe2O3 were studied by X-ray diffraction and electron diffraction techniques. Results show that crystals of cobalt ferrite CoFe2O4 with a spinel type crystal structure of lattice constant 8.415 Å grew epitaxially on γ-Fe2O3. The acicular direction of the epitaxially grown Co-γ-Fe2O3 as well as γ-Fe2O3 was in the [101] direction. It was found that from the lattice constant value and the half width of X-ray diffraction peaks, the lattice constant epitaxially grown Co γ-Fe2O3 may be attributed to two kinds of crystals, viz., seed γ-Fe2O3 (a = 8.35 ~ 8.37 A?) which was partly reduced to Fe3O4, and surface layer CoFe2O4 (a = 8.415 A?). The crystal growth in the interface between the seed crystals and the growth layer was affected by the crystal structure of the seed crystals. The lattice constant of CoFe2O4 which was located in the vicinity of the interface was almost equal to that of the seed crystals.  相似文献   

9.
57Fe Mössbauer spectra at room temperature, both with and without external magnetic field, indicate that Co2+ ions in CoxFe3?xO4spinels (x?0.04) are situated on the octahedral B sites. The Mössbauer parameters are listed and the existence of unpaired Fe3+ ions is evidenced.  相似文献   

10.
We studied by Mössbauer spectroscopy the Na0.82CoO2 compound using 1% 57Fe as a local probe which substitutes for the Co ions. Mössbauer spectra at T=300 K revealed two sites which correspond to Fe3+ and Fe4+. The existence of two distinct values of the quadrupole splitting instead of a continuous distribution should be related with the charge ordering of Co+3, Co+4 ions and ion ordering of Na(1) and Na(2). Below T=10 K part of the spectrum area, corresponding to Fe4+ and all of Fe3+, displays broad magnetically split spectra arising either from short-range magnetic correlations or from slow electronic spin relaxation.  相似文献   

11.
The electronic structures of SrTiO3 crystals doped with Fe3+, Fe4+ and Fe5+ ions have been investigated using the Xα cluster approach. The ground-state eigenvalues show the lower Fe acceptor level, of t2g↓ symmetry, localized inside the SrTiO3 band gap, respectively at 2.8 eV (Fe3+, S = 52), 1.6 eV (Fe4+, S = 1) or 1.1 eV (Fe4+, S = 0) and 1.1 eV (Fe5+, S = 32) above the valence band edge. Other acceptor levels, with eg↓ and eg↑ symmetries, appear inside the gap when the Fe nominal ionicity increases.The theoretical Xα excitation energies of O 2p-Fe 3d transitions confirms the experimental interpretations of acceptor charge transfer bands for the optical absorption spectra of SrTiO3:Fe4+ and SrTiO3:Fe5+ crystals.The large optical excitation energies compared with the thermal transitions are partly due to the O 2p band width.  相似文献   

12.
Mössbauer source and absorber spectra of FeCo2O4 and Fe0.5Co2.5O4 have been obtained between 82 and 523 K. Interpretation of the spectra allow the cation distributions of the compounds to be determined. FeCo2O4 is Co2+0.55Fe3+0.45[Co2+0.45Fe3+0.55Co3+1.0]O4 and Fe0.5Co2.5O4 is Co12+[Fe3+0.5Co3+1.5]O4. Spinel tetrahedral site quadruple splitting is observed in both compounds.  相似文献   

13.
The binding energies of Ga 3d, As 3d, Ga L3M4,5M4,5 and O 1s in Ga, As, GaAs, Ga2O3, As2O3 and As2O5 are reevaluated by means of ESCA. The calibration lines of the C 1s and the Au 4f72 gave different binding energies for the compound materials. In order to determine the absolute binding energies, the chemical shifts in Auger and photoelectron lines from a layered structure composed of thin layer oxide and substrate of a defined material were used. An energy calibration curve, E(Ga 3d) vs. ΔE(GA LMM - Ga 3d), was found to be useful for determination of binding energies in the material which contains gallium. In the case of the GaAs sample, both the chemical etching and the ion bombardment effects on the chemical structure of the GaAs surface are also discussed.  相似文献   

14.
The total density of occupied states in the valence band of CoO and Co3O4 is determined by XPS and UPS. From variations of excitation probability of the bands, the 4 e V wide O2p band is shown to be located around 5 eV for both oxides, while structures obtained from photoionisation of the localized 3d band spread over 10 eV range below the Fermi level overlapping with O2p band. The 3d peaks located at binding energy <3 eV correspond to the calculated energy of the dn ?1 manifold final state in the octahedral and tetrahedral crystal field of CoO and Co3O4. The 3d levels at higher binding energy are shown to occur from configuration interaction in both final and initial states. These last peaks are higher in intensity for CoO relative to Co3O4. A superior limit for the width of the 3d initial band in a one electron energy diagram is given to be <3 eV. This value associated to the Coulomb correlation energy measured equal to ~3 eV. This value associated to the Coulomb correlation energy measured equal to ~3 eV from shake-up and Auger energy confirms the Mott insulator nature of CoO.  相似文献   

15.
LiFeCl4 and AgFeCl4 are obtained by direct reaction between LiCl or AgCl and FeCl3 at 300°C and 400°C respectively. Both compounds are monoclinic with a = 7.02 (1) A?, b = 6.33 (1) A?, c = 12.72 (4) A?, β = 92° (30') for LiFeCl4 and a = 10.60 (5) A?, b = 6.30 (5) A?, c = 12.34 (10) A?, β = 106° (1) for AgFeCl4.LiFeCl4 is clearly isotypic of LiAlCl4. Magnetic measurements characterize in both cases Fe3+ ions in a high spin tetrahedral situation. LiFeCl4 becomes antiferromagnetic at low temperature (TN?10 K). AgFeCl4 reveals a more complex situation. On contrary to the silver derivative, LiFeCl4 is a good ionic conductor with activation energy of 0.78 eV in the solid state below 105°C, and a sharp increase in the lithium mobility at this temperature.  相似文献   

16.
The emission spectra of Nd3+ ions in KNdxRE1?xP4O12 (RE = Y, La and Pr) and KNdxCr1?xP4O12 crystals were investigated. Under selective excitation into 2G72 + 4G52 multiples at 1.6 K the fluorescence of Nd3+ ions in non-equivalent crystal sites was observed. The excitation spectrum of the 4F32 fluorescence had a complex satellite structure. Time resolved measurements showed the dependence of the fluorescence decay on the excitation wavelength. Selective excitation into the satellite lines at the wings of the main transition led to strongly non-exponential decay. The low temperature results indicated that there is no spectral energy transfer between ions in different types of sites.  相似文献   

17.
By using a multicalcination procedure, Co-doped Bi4NdTi3Fe1?xCoxO15 (x=0.1,0.3,0.5 and 0.7) (Cox) ceramics were synthesized. The samples showed a single-phase (SP) Aurivillius structure containing four perovskite layers. Plate-like morphology of the grains which is related to the layered perovskite structure of the samples was clearly observed by SEM. The multiferroic properties of the samples at room temperature (RT) were demonstrated by dielectric, ferroelectric and magnetic measurements. With x ranging from 0.1 to 0.7, all the samples show RT multiferroic properties although there is no obvious regularity between the Co content and the multiferroic property. Very interestingly, Co0.3 sample exhibits the optimum RT magnetic property, which can be attributed to the inclination of occupying the inner octahedra center for doped Co ions and the nearly 1:1 ratio of Fe and Co ions in the inner octahedra. The present work offers new insight into the compositional design of promising lead-free RT multiferroic materials.  相似文献   

18.
MgO-Al2O3-SiO2-TiO2 glass-ceramics have been γ-irradiated and examined by electron spin resonance. The spectra observed arise from two principle sites; Ti4+ ions radiochemically reduced to Ti3+ and holes trapped at the π-type orbitals of oxygen ions bridging between SiO4 and AlO4 units. The Ti3+ line, although very similar to its form in the parent glasses, is in general a composite of two distinct lineshapes, each of which is associated with one of the two major crystalline phases Cordierite or Enstatite. The hole centre has a characteristic hyperfine interaction similar to that of the Boron Oxygen Hole Centre of Borate glasses. The Hamiltonian parameters of this centre are S = 12, I = 52, g1 = 2.0023, g2 = 2.0148, g3 = 2.035 and |A1| = |A2| = |A3| = 8.41 × 10-4cm-1.  相似文献   

19.
The magneto-optical spectra of Co1+xFe2?xO4 show with increasing Co3+ content an increasing intensity of the 4A2 ? 4T1(F) and 4A2 ? 4T1(P) transition of Co2+ at 0.8 and 2.0 eV. A decrease in the Co2+-Fe3+ charge transfer transitions on octahedral sites is found. In the optical spectra a strong increase in optical absorption is found with dominant transitions at 0.8, 1.6 and 2.6 eV due to Co3+ crystal field transitions on octahedral sites and a Co2+-Co3+ charge transfer. Conversion Electron Mössbauer Spectroscopy has been used to determine the cation distribution in the surface layer of the samples. The results indicate a shift of Co2+ from octahedral to tetrahedral sites when Co3+ is substituted in CoFe2O4. This results in enhanced optical absorption, enhanced magneto-optical effects and a lower Curie temperature.  相似文献   

20.
The exchange bias field HE was much higher for Ta/Co/Co3O4/Ta than Ta/Co/Co3O4, fabricated in a magnetron sputtering system under the same experimental conditions. The XPS analysis showed that Ta atoms of cap layer for Ta/Co/Co3O4/Ta diffused into Co3O4 layer and reduced Co3O4, and introduced some nonmagnetic defects into the AFM layer. The dilution of the AFM layer led to the formation of volume domains. We believed that the higher HE for the multilayers Ta/Co/Co3O4/Ta was primarily attributed to the formation of volume domain due to some nonmagnetic defects in AFM layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号