首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of CO, O2, H2, N2, C2H4 and C6H6 with an Ir(110) surface has been studied using LEED, Auger electron spectroscopy and flash desorption mass spectroscopy. Adsorption of oxygen at 30°C produces a (1× 2) structure, while a c(2 × 2) structure is formed at 400°C. Two peaks have been detected in the thermal desorption spectrum of oxygen following adsorption at 30°C. The heat of adsorption of hydrogen is slightly higher on Ir(110) than on Ir(111). Adsorption of carbon monoxide at 30°C produces a (2 × 1) surface structure. The main CO desorption peak is found around 230, while two other desorption peaks are observed around 340 and 160°C. At exposures between 250 and 500°C carbon monoxide adsorption yields a c(2 × 2) structure and a desorption peak around 600°C. Carbon monoxide is adsorbed on an Ir(110) surface partly covered with oxygen or carbon in a new binding state with a significantly higher desorption temperature than on the clean surface. Adsorption of nitrogen could not be detected on either clean or on carbon covered Ir(110) surfaces. The hydrocarbon molecules do not form ordered surface structures on Ir(110). The thermal desorption spectra obtained after adsorption of C6H6 or C2H4 are similar to those reported previously for Ir(111) consisting mostly of hydrogen. Heating the (110) surface above 700°C in the presence of C6H6 or C2H4 results in the formation of an ordered carbonaceous overlayer with (1 × 1) structure. The results are compared with those obtained previously on the Ir(111) and Ir(755) or stepped [6(111) × (100)] surfaces. The CO adsorption results are discussed in relation to data on similar surfaces of other Group VIII metals.  相似文献   

2.
The chemisorption of NO on Ir(110) has been studied with thermal desorption mass spectrometry (including isotopic exchange experiments), X-ray and UV-photoelectron spectroscopies, Auger electron spectroscopy,LEED and CPD measurements. Chemisorption of NO proceeds by precursor kinetics with the initial probability of adsorption equal to unity independent of surface temperature. Saturation coverage of molecular NO corresponds to 9.6 × 1014 cm?2 below 300 K. Approximately 35% of the saturated layer desorbs as NO in two well separated features of equal integrated intensity in the thermal desorption spectra. The balance of the NO desorbs as N2 and O2 with desorption of N2 beginning after the low-temperature peak of NO has desorbed almost completely. Molecular NO desorbs with activation energies of 23.4–28.9 and 32.5–40.1 kcal mole?1, assuming the preexponential factor for both processes is between 1013–1016 s?1. At low coverages of NO, N2 desorbs with an activation energy of 36–45 kcal mole?1, assuming the preexponential factor is between 10?2 and 10 cm2s?1. Levels at 13.5, 10.4 and 8.5 eV below the Fermi level are observed with HeI UPS, associated with the 4σ, 5σ and 1π orbitals of NO, respectively. Core levels of NO appear at 531.5 eV [O(1s)] and 400.2 eV [N(1s)], and do not shift in the presence of oxygen. Oxygen overlayers tend to stabilize chemisorbed NO as reflected in thermal desorption spectra and a downshift in the 1π level to 9.5 eV.  相似文献   

3.
The adsorption of CO, O2, and H2O was studied on both the (111) and [6(111) × (100)] crystal faces of iridium. The techniques used were LEED, AES, and thermal desorption. Marked differences were found in surface structures and heats of adsorption on these crystal faces. Oxygen is adsorbed in a single bonding state on the (111) face. On the stepped iridium surface an additional bonding state with a higher heat of adsorption was detected which can be attributed to oxygen adsorbed at steps. On both (111) and stepped iridium crystal faces the adsorption of oxygen at room temperature produced a (2 × 1) surface structure. Two surface structures were found for CO adsorbed on Ir(111); a (√3 × √3)R30° at an exposure of 1.5–2.5 L and a (2√3 × 2√3)R30° at higher coverage. No indication for ordering of adsorbed CO was found on the Ir(S)-[6(111) × (100)] surface. No significant differences in thermal desorption spectra of CO were found on these two faces. H2O is not adsorbed at 300 K on either iridium crystal face. The reaction of CO with O2 was studied on Ir(111) and the results are discussed. The influence of steps on the adsorption behaviour of CO and O2 on iridium and the correlation with the results found previously on the same platinum crystal faces are discussed.  相似文献   

4.
The interaction of NO with a Ni (111) surface was studied by means of LEED, AES, UPS and flash desorption spectroscopy. NO adsorbs with a high sticking probability and may form two ordered structures (c4 × 2 and hexagonal) from (undissociated) NOad. The mean adsorption energy is about 25 kcalmole. Dissociation of adsorbed NO starts already at ?120°C, but the activation energy for this process increases with increasing coverage (and even by the presence of preadsorbed oxygen) up to the value for the activation energy of NO desorption. The recombination of adsorbed nitrogen atoms and desorption of N2 occurs around 600 °C with an activation energy of about 52 kcalmole. A chemisorbed oxygen layer converts upon further increase of the oxygen concentration into epitaxial NiO. A mixed layer consisting of Nad + Oad (after thermal decomposition of NO) exhibits a complex LEED pattern and can be stripped of adsorbed oxygen by reduction with H2. This yields an Nad overlayer exhibiting a 6 × 2 LEED pattern. A series of new maxima at ≈ ?2, ?8.8 and ?14.6 eV is observed in the UV photoelectron spectra from adsorbed NO which are identified with surface states derived from molecular orbitals of free NO. Nad as well as Oad causes a peak at ?5.6 eV which is derived from the 2p electrons of the adsorbate. The photoelectron spectrum from NiO agrees closely with a recent theoretical evaluation.  相似文献   

5.
The adsorption/desorption characteristics of CO, O2, and H2 on the Pt(100)-(5 × 20) surface were examined using flash desorption spectroscopy. Subsequent to adsorption at 300 K, CO desorbed from the (5×20) surface in three peaks with binding energies of 28, 31.6 and 33 kcal gmol?1. These states formed differently from those following adsorption on the Pt(100)-(1 × 1) surface, suggesting structural effects on adsorption. Oxygen could be readily adsorbed on the (5×20) surface at temperatures above 500 K and high O2 fluxes up to coverages of 23 of a monolayer with a net sticking probability to ssaturation of ? 10?3. Oxygen adsorption reconstructed the (5 × 20) surface, and several ordered LEED patterns were observed. Upon heating, oxygen desorbed from the surface in two peaks at 676 and 709 K; the lower temperature peak exhibited atrractive lateral interactions evidenced by autocatalytic desorption kinetics. Hydrogen was also found to reconstruct the (5 × 20) surface to the (1 × 1) structure, provided adsorption was performed at 200 K. For all three species, CO, O2, and H2, the surface returned to the (5 × 20) structure only after the adsorbates were completely desorbed from the surface.  相似文献   

6.
The interaction of cyclopropane with hydrogen and the residue resulting from the decomposition of the former on the reconstructed Ir(110)-(1×2) surface has been studied with thermal desorption mass spectrometry. Although hydrogen will not adsorb onto the saturated overlayer of dissociatively adsorbed cyclopropane, the preadsorption of hydrogen into the β2 adstate inhibits the decomposition of cyclopropane on the surface. Desorption of the hydrogen from the saturated overlayer of the dissociatively adsorbed cyclopropane partially regenerates the reactivity of the surface.  相似文献   

7.
The adsorption of hydrogen on clean Pd(110) and Pd(111) surfaces as well as on a Pd(111) surface with regular step arrays was studied by means of LEED, thermal desorption spectroscopy and contact potential measurements. Absorption in the bulk plays an important role but could be separated from the surface processes. With Pd(110) an ordered 1 × 2 structure and with Pd(111) a 1 × 1 structure was formed. Maximum work function increases of 0.36, 0.18 and 0.23 eV were determined with Pd(110), Pd(111) and the stepped surface, respectively, this quantity being influenced only by adsorbed hydrogen under the chosen conditions. The adsorption isotherms derived from contact potential data revealed that at low coverages θ ∞ √pH2, indicating atomic adsorption. Initial heats of H2 adsorption of 24.4 kcal/mole for Pd(110) and of 20.8 kcal/mole for Pd(111) were derived, in both cases Ead being constant up to at least half the saturation coverage. With the stepped surface the adsorption energies coincide with those for Pd(111) at medium coverages, but increase with decreasing coverage by about 3 kcal/mole. D2 is adsorbed on Pd(110) with an initial adsorption energy of 22.8 kcal/mole.  相似文献   

8.
The chemisorption of nitric oxide on (110) nickel has been investigated by Auger electron spectroscopy, LEED and thermal desorption. The NO adsorbed irreversibly at 300 K and a faint (2 × 3) structure was observed. At 500 K this pattern intensified, the nitrogen Auger signal increased and the oxygen signal decreased. This is interpreted as the dissociation of NO which had been bound via nitrogen to the surface. By measuring the rate of the decomposition as a function of temperature the dissociation energy is calculated at 125 kJ mol?1. At ~860 K nitrogen desorbs. The rate of this desorption has been measured by AES and by quantitative thermal desorption. It is shown that the desorption of N2 is first order and that the binding energy is 213 kJ mol?1. The small increase in desorption temperature with increasing coverage is interpreted as due to an attractive interaction between adsorbed molecules of ~14 kJ mol?1 for a monolayer. The (2 × 3) LEED pattern which persists from 500–800 K is shown to be associated with nitrogen only. The same pattern is obtained on a carbon contaminated crystal from which oxygen has desorbed as CO and CO2. The (2 × 3) pattern has spots split along the (0.1) direction as (m, n3) and (m2, n). This is interpreted as domains of (2 × 3) structures separated by boundaries which give phase differences of 3 and π. The split spots coalesce as the nitrogen starts to desorb. A (2 × 1) pattern due to adsorbed oxygen was then observed to 1100 K when the oxygen dissolved in the crystal leaving the nickel (110) pattern.  相似文献   

9.
The adsorption of sulfur dioxide and the interaction of adsorbed oxygen and sulfur on Pt(111) have been studied using flash desorption mass spectrometry and LEED. The reactivity of adsorbed sulfur towards oxygen depends strongly on the sulfur surface concentration. At a sulfur concentration of 5 × 1014 S atoms cm?2 ((3 × 3)R30° structure) oxygen exposures of 5 × 10?5 Torr s do not result in the adsorption of oxygen nor in the formation of SO2. At concentrations lower than 3.8 × 1014 S stoms cm?2 ((2 × 2) structure) the thermal desorption following oxygen dosing at 320 K yields SO2 and O2. With decreasing sulfur concentration the amount of desorbing O2 increases and that of SO2 passes a maximum. This indicates that sulfur free surface regions, i.e. holes or defects in the (2 × 2) S structure, are required for the adsorption of oxygen and for the reaction of adsorbed sulfur with oxygen. SO2 is adsorbed with high sticking probability and can be desorbed nearly completely as SO2 with desorption maxima occurring at 400, 480 and 580 K. The adsorbed SO2 is highly sensitive to hydrogen. Small H2 doses remove most of the oxygen and leave adsorbed sulfur on the surface. After adsorption of SO2 on an oxygen predosed surface small amounts of SO3 were desorbed in addition to SO2 and O2 during heating. Preadsorbed oxygen produces variations of the SO2 peak intensities which indicate stabilization of an adsorbed species by coadsorbed oxygen.  相似文献   

10.
The chemisorption and reactivity of O2 and H2 with the sulfided Mo(100) surface and the basal (0001) plane of MoS2 have been studied by means of Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED). These studies have been carried out at both low (10?8–10?5Torr) and high (1 atm) pressures of O2 and H2. Sulfur desorbs from Mo(100) both as an atom and as a diatomic molecule. Sulfur adsorbed on Mo(100) blocks sites of hydrogen adsorption without noticeably changing the hydrogen desorption energies. TDS of 18O coadsorbed with sulfur on the Mo(100) surface produced the desorption of SO at 1150 K, and of S, S2 and O, but not SO2. A pressure of 1 × 10?7 Torr of O2 was sufficient to remove sulfur from Mo(100) at temperatures over 1100 K. The basal plane of MoS2 was unreactive in the presence of 1 atm of O2 at temperatures of 520 K. Sputtering of the MoS2 produced a marked uptake of oxygen and the removal of sulfur under the same conditions.  相似文献   

11.
R. Jaeger  D. Menzel 《Surface science》1980,100(3):561-580
For hydrogen adsorption on W(100), the evolution of the c(2 × 2) LEED intensities and of the H+ ESD signal with H coverage have been investigated for various adsorption and annealing temperatures. Striking changes have been found for the half-order LEED intensities in the temperature range 140–360 K, in agreement with other workers, where the H+ signal showed only minor differences. The maxima of the LEED and the ESD intensities, however, occurred at the same exposure throughout this range (≈25% of saturation coverage). A temperature dependent variation of the height of the H+ maximum was observed which was reversible up to the desorption temperature of the β2 hydrogen phase. The H+ ESDIAD lobe was found to have a polar FWHM of about 21°, independent of temperature between 140 and 450 K, and without any azimuthal dependence. These results provide evidence for the assumption that the observable H+ ions desorb from reconstructed sites. The number of these sites depends on temperature and hydrogen coverage, as shown by the change of the H+ current with these parameters. The transition from H on reconstructed to H on unreconstructed sites is of the order-order type; the energy difference between the two different adsorbate situations is about 135 meV/site at the quarter coverage. The consistency of the results and conclusions with a bridge-site model for H adsorption is shown. Elastic interactions lead to agglomeration of adsorbed H. The azimuthal isotropy of the ESDIAD lobes is interpreted by a superposition of emission from various types of bridge-sites which smear out the anisotropy expected for individual bridge-sites.  相似文献   

12.
The adsorption and reaction of Br2 with Ag(110) was studied with Auger electron spectroscopy, LEED, work function measurements and thermal desorption spectroscopy in the temperature range of 130–1000 K. Depending on Br coverage and crystal temperature, four different adsorption and reaction states could be detected. For fractional monolayer coverages, chemisorbed Br(ad) is found to be the most stable species. This adsorption state saturates for θ(Br) ? 0.75. In the chemisorption stage, two LEED patterns, a p(2 × 1) with θ(Br) ? 0.5 and a c(4 × 2) with θ(Br) ? 0.75, were observed. For higher Br2 exposures and T = 130 K a layer-by-layer growth of AgBr is detected. At higher temperature, T > 190 K, there is evidence for a transformation from a 2D growth mechanism of AgBr into a 3D agglomeration of larger AgBr cluster. Molecularly adsorbed.  相似文献   

13.
14.
The absolute coverage of deuterium adsorbed on Ni(110) at temperatures below 170 K to the formation of a (1 × 2) LEED pattern has been determined by nuclear microanalysis (NMA). The result, θD = 0.96 ± 0.08, is consistent with a saturation coverage of one full monolayer. Heating the crystal above ~ 190 K is shown to result in a gradual loss of deuterium from the system, accompanied by streaking of the LEED pattern, with complete desorption above ~ 340 K. The low-temperature (2 × 1)-D phase was found to correspond to θD = 0.64 ± 0.05 monolayers. The results are expected to be valid also for the equivalent phases obtained by hydrogen adsorption.  相似文献   

15.
The adsorption of hydrogen on Pt (100) was investigated by utilizing LEED, Auger electron spectroscopy and flash desorption mass spectrometry. No new LEED structures were found during the adsorption of hydrogen. One desorption peak was detected by flash desorption with a desorption maximum at 160 °C. Quantitative evaluation of the flash desorption spectra yields a saturation coverage of 4.6 × 1014 atoms/cm2 at room temperature with an initial sticking probability of 0.17. Second order desorption kinetics was observed and a desorption energy of 15–16 kcal/mole has been deduced. The shapes of the flash desorption spectra are discussed in terms of lateral interactions in the adsorbate and of the existence of two substates at the surface. The reaction between hydrogen and oxygen on Pt (100) has been investigated by monitoring the reaction product H2O in a mass spectrometer. The temperature dependence of the reaction proved to be complex and different reaction mechanisms might be dominant at different temperatures. Oxygen excess in the gas phase inhibits the reaction by blocking reactive surface sites. At least two adsorption states of H2O have to be considered on Pt (100). Desorption from the prevailing low energy state occurs below room temperature. Flash desorption spectra of strongly bound H2O coadsorbed with hydrogen and oxygen have been obtained with desorption maxima at 190 °C and 340 °C.  相似文献   

16.
The chemisorption of NO on clean and Na-dosed Ag(110) has been studied by LEED, Auger spectroscopy, and thermal desorption. On the clean surface, non-dissociative adsorption into the α-state occurs at 300 K with an initial sticking probability of ~0.1, and the surface is saturated at a coverage of about 125. Desorption occurs without decomposition, and is characterised by an enthalpy of Ed ~104 kJ mol?1 — comparable with that for NO desorption from transition metals. Surface defects do not seem to play a significant role in the chemistry of NO on clean Ag, and the presence of surface Na inhibits the adsorption of αNO. However, in the presence of both surface and subsurface Na, both the strength and the extent of NO adsorption are markedly increased and a new state (β1NO) with Ed ~121 kJ mol?1 appears. Adsorption into this state occurs with destruction of the Ag(110)-(1 × 2)Na ordered phase. Desorption of β1NO occurs with significant decomposition, N2 and N2O are observed as geseous products, and the system's behaviour towards NO resembles that of a transition metal. Incorporation of subsurface oxygen in addition to subsurface Na increases the desorption enthalpy (β2NO), maximum coverage, and surface reactivity of NO still further: only about half the adsorbed layer desorbs without decomposition. The bonding of NO to Ag is discussed, and comparisons are made with the properties of α and βNO on Pt(110).  相似文献   

17.
The adsorption of NO on Ru(001), and its co-adsorption with oxygen, has been studied by LEED, TPD, EELS and IRAS (with particular emphasis on the vibrational spectroscopies) over a wide range of temperatures. It has been well established (ref.1,2) that the adsorption of NO on Ru(001) at room temperature is initially dissociative with molecular adsorption taking place only after a dissociative layer is formed. It therefore seemed appropriate to study the effect of oxygen co-adsorption on the adsorption of NO under well defined conditions. The dissociation layer is characterized by a (2×2) LEED structure and is found to influence the subsequent molecular adsorption of NO in exactly the same way as a saturated, pre-chemisorbed layer of oxygen. One effect of oxygen co-adsorption is to suppress the v1 intensity in the desorption spectra (ref.1) (the v2 peak remains essentially unchanged), while simultaneously producing a new TPD peak of NO (v1(O)) with lower binding energy. In the corresponding EELS spectra these two species (v1 and v1 (O)) are clearly distinguished.Our inability to observe anything other than the absorption band at ~1800cm?1 in the IRAS experiments led us to repeat the EELS experiments (ref.2) together with TPD to elucidate more clearly the nature of the v1 molecular species (ref.1). The results indicate that the adsorption of NO at low temperature (~ 95K) initially produces a species of NO with an N-O stretch frequency of 1400cm?1. This is the only species observed up to an exposure of 0.5 Langmuirs, and on warming to room temperature it dissociates completely to produce the (2×2) pattern described above. Pre-adsorption of oxygen prevents the formation of this species of NO. Only subsequent to the saturation of this species during adsorption at low temperature do two bands at ~1490cm?1 and ~1810cm?1, associated with the v1 and v2 molecular species (ref.1), appear. We suggest that the low temperature, low coverage species is lying down, and the molecular species v1, and v2 are both adsorbed on “on top” sites but corresponding to the bent and linear forms of the NO molecule, respectively.  相似文献   

18.
Election beam induced perturbations of CO chemisorbed on Ir(111) have been measured using LEED and AES. The total interaction cross-section for electron-stimulated desorption and dissociation is found to be 0.8 to 1.7 × 10?17 cm2 near 13monolayer coverage at a beam energy of 86 eV. This total cross-section is estimated to be 1 × 10?17 cm2 when defined with respect to the primary flux of a 2.5 keV beam. Electron-stimulated dissociation is found to occur at 1–2% of the rate of stimulated desorption.  相似文献   

19.
Adsorption of CO on Ni(111) surfaces was studied by means of LEED, UPS and thermal desorption spectroscopy. On an initially clean surface adsorbed CO forms a √3 × √3R30° structure at θ = 0.33 whose unit cell is continuously compressed with increasing coverage leading to a c4 × 2-structure at θ = 0.5. Beyond this coverage a more weakly bound phase characterized by a √72 × √72R19° LEED pattern is formed which is interpreted with a hexagonal close-packed arrangement (θ = 0.57) where all CO molecules are either in “bridge” or in single-site positions with a mutual distance of 3.3 Å. If CO is adsorbed on a surface precovered by oxygen (exhibiting an O 2 × 2 structure) a partially disordered coadsorbate 2 × 2 structure with θo = θco = 0.25 is formed where the CO adsorption energy is lowered by about 4 kcal/mole due to repulsive interactions. In this case the photoemission spectrum exhibits not a simple superposition of the features arising from the single-component adsorbates (i.e. maxima at 5.5 eV below the Fermi level with Oad, and at 7.8 (5σ + 1π) and 10.6 eV (4σ) with COad, respectively), but the peak derived from the CO 4σ level is shifted by about 0.3 eV towards higher ionization energies.  相似文献   

20.
This paper is the first of three articles devoted to the CO/Mo(110) chemisorption. The experimental study of adsorption and desorption kinetics was performed by several methods: thermal desorption, low energy electron diffraction and Auger electron spectroscopy. The adsorption of CO on Mo(110) presents two different states. For these two states the desorption kinetics are first order ones, the desorption energies and frequency factors have been determined (E1 = 99 kcal mole?1, E2 = 50 kcal mole?1, v1 = 1019 s?1, v2, = 5 × 1010 s?1). The dependence of sticking coefficient on surface coverage θ was investigated and was found different for the two states of adsorption. LEED shows that the adsorption is not ordered. AES investigation suggests that in the two states C and O have different positions with respect to MO atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号