首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 725 毫秒
1.
In a recent experimental work the Ir complex [Ir(cod)(py)(PCy(3))](PF(6)) (that is, Crabtree's catalyst) has been shown to catalyze the C-H arylation of electron-rich heteroarenes with iodoarenes using Ag(2)CO(3) as base. For this process, an electrophilic metalation mechanism, (S(E)Ar) has been proposed as operative mechanism rather than the concerted metalation-deprotonation (CMD) mechanism, widely implicated in Pd-catalyzed arylation reactions. Herein we have investigated the C-H activation step for several (hetero)arenes catalyzed by a Ir(III) catalyst and compared the data obtained with the results for the Pd(II)-catalyzed C-H bond activation. The calculations demonstrate that, similar to Pd(II)-catalyzed reactions, the Ir(III)-catalyzed direct C-H arylation occurs through the CMD pathway which accounts for the experimentally observed regioselectivity. The transition states for Ir(III)-catalyzed direct C-H arylation feature stronger metal-C((arene)) interactions than those for Pd(II)-catalyzed C-H arylation. The calculations also demonstrate that ligands with low trans effect may decrease the activation barrier of the C-H bond cleavage.  相似文献   

2.
The use of ligands to control regioselectivity in transition-metal-catalyzed C-H activation/functionalization is a highly desirable but challenging task. Recently, Itami et al. reported an important finding relating to Pd-catalyzed ligand-controlled α/β-selective C-H arylation of thiophenes. Specifically, the use of the 2,2'-bipyridyl ligand resulted in α-arylation, whereas the use of the bulky fluorinated phosphine ligand P[OCH(CF(3))(2)](3) resulted in β-arylation. Understanding of this surprising ligand-controlled α/β-selectivity could provide important insights into the development of more efficient catalyst systems for selective C-H arylation, and so we carried out a detailed computational study on the problem with use of density functional theory methods. Three mechanistic possibilities--S(E)Ar and migration, metalation/deprotonation, and Heck-type arylation mechanisms--were examined. The results showed that the S(E)Ar and migration mechanism might not be plausible, because the key Wheland intermediates could not be obtained. On the other hand, our study indicated that the metalation/deprotonation and Heck-type arylation mechanisms were both involved in Itami's reactions. In the metalation/deprotonation pathway the α-selective product (C5-product) was preferred, whereas in the Heck-type arylation mechanism the β-selective product (C4-product) was favored. The ligands played crucial roles in tuning the relative barriers of the two different pathways. In the 2,2'-bipyridyl-assisted system, the metalation/deprotonation pathway was energetically advantageous, leading to α-selectivity. In the P[OCH(CF(3))(2)](3)-assisted system, on the other hand, the Heck-type arylation mechanism was kinetically favored, leading to β-selectivity. An interesting finding was that P[OCH(CF(3))(2)](3) could produce a C-H···O hydrogen bond in the catalyst system, which was crucial for stabilization of the Heck-type transition state. In comparison, this C-H···O hydrogen bond was absent with the other phosphine ligands [i.e., P(OMe)(3), PPh(3), PCy(3)] and these phosphine ligands therefore favored the metalation/deprotonation pathway leading to α-selectivity. Furthermore, in this study we have provided theoretical evidence showing that the Heck-type arylation reaction could proceed through an anti-β-hydride elimination process.  相似文献   

3.
Two catalytic protocols of the oxidative C-C bond formation have been developed on the basis of the C-H bond activation of pyridine N-oxides. Pd-catalyzed alkenylation of the N-oxides proceeds with excellent regio-, stereo-, and chemoselectivity, and the corresponding ortho-alkenylated N-oxide derivatives are obtained in good to excellent yields. Direct cross-coupling reaction of pyridine N-oxides with unactivated arene was also developed in the presence of Pd catalyst and Ag oxidant, which affords ortho-arylated pyridine N-oxide products with high site-selectivity.  相似文献   

4.
通过密度泛函理论(DFT)研究了钯催化氧化N—H键羰基化反应合成1,3,4-噁二唑-2(3H)-酮杂环化合物的反应机理. 计算结果表明, 这一反应的催化循环包含N1—H活化、 羰基插入、 N2—H活化和还原消除4个阶段. 反应首先通过协同金属化/去质子化机理活化N1—H键, 然后羰基插入Pd—N1键生成稳定的六元金属环中间体, 随后通过一步反应直接发生N2—H键活化, 最后还原消除. 其中, 羰基插入是整个催化循环的决速步骤, 能垒为102.0 kJ/mol. 研究了配体效应和取代基效应, 其结果与已有的实验结果一致.  相似文献   

5.
Gong X  Song G  Zhang H  Li X 《Organic letters》2011,13(7):1766-1769
A Pd(II)-catalyzed oxidative coupling between pyridine N-oxides and N-substituted indoles via 2-fold C-H bond activation was achieved with high selectivity using Ag(2)CO(3) as an oxidant.  相似文献   

6.
Density functional calculations on the low-temperature cyclometalation of dimethylbenzylamine with [IrCl2Cp*]2/NaOAc have characterized a novel electrophilic activation pathway for C-H bond activation. C-H activation occurs from [Ir(DMBA-H)(kappa2-OAc)Cp*]+, and OAc plays a central role in determining the barrier for reaction. Dissociation of the proximal OAc arm sets up a facile intramolecular deprotonation via a geometrically convenient six-membered transition state. Dissociation of the distal OAc arm, however, leads to a higher energy four-membered (sigma-bond metathesis) transition state, while oxidative addition is even higher in energy. For this Ir3+ system, these three mechanisms appear to lie within a continuum in which the participation of the metal center and an H-accepting ancillary ligand are inversely related. The ability of the ancillary ligand to act as a proton acceptor is the key factor in determining which mechanism pertains.  相似文献   

7.
Quaternary ammonium salts were synthesized in moderate to good yields through double oxidative C−H bond activation on azobenzenes. The mechanism of the highly regioselective reaction of 2-azobiaryls with alkenes to give orange-red-fluorescent cinnolino[2,3-f]phenanthridin-9-ium salts and 15H-cinnolino[2,3-f]phenanthridin-9-ium-10-ide is proposed to involve ortho C−H olefination of the 2-azobiaryl compound with the alkene, intramolecular aza-Michael addition, concerted metalation–deprotonation (CMD), reductive elimination, and oxidation.  相似文献   

8.
Monomeric imidozirconocene complexes of the type Cp2(L)Zr=NCMe3 (Cp = cyclopentadienyl, L = Lewis base) have been shown to activate the carbon-hydrogen bonds of benzene, but not the C-H bonds of saturated hydrocarbons. To our knowledge, this singularly important class of C-H activation reactions has heretofore not been observed in imidometallocene systems. The M=NR bond formed on heating the racemic ethylenebis(tetrahydro)indenyl methyl tert-butyl amide complex, however, cleanly and quantitatively activates a wide range of n-alkane, alkene, and arene C-H bonds. Mechanistic experiments support the proposal of intramolecular elimination of methane followed by a concerted addition of the hydrocarbon C-H bond. Products formed by activation of sp2 C-H bonds are generally more thermodynamically stable than those formed by activation of sp3 C-H bonds, and those resulting from reaction at primary C-H bonds are preferred over secondary sp3 C-H activation products. There is also evidence that thermodynamic selectivity among C-H bonds is sterically rather than electronically controlled.  相似文献   

9.
Anand M  Sunoj RB 《Organic letters》2011,13(18):4802-4805
Density functional theory investigations on the mechanism of palladium acetate catalyzed direct alkoxylation of N-methoxybenzamide in methanol reveal that the key steps involve solvent-assisted N-H as well as C-H bond activations. The transition state for the critical palladium-carbon bond formation through a concerted metalation deprotonation (CMD) process leading to a palladacycle intermediate has been found to be more stable in the methanol-assisted pathway as compared to an unassisted route.  相似文献   

10.
A mixed directing‐group strategy for inexpensive [Co(acac)3]‐catalyzed oxidative C?H/C?H bond arylation of unactivated arenes has been disclosed. This strategy enables the arylation of a wide range of benzamide and arylpyridines effectively to afford novel bifunctionalized biaryls, which are difficult to achieve by common synthetic routes. Two different pathways, namely, a single‐electron‐transmetalation process (8‐aminoquinoline‐directed) and a concerted metalation–deprotonation process (pyridine‐directed), were involved to activate two different inert aromatic C?H bonds. Moreover, the aryl radicals have been trapped by 2,6‐di‐tert‐butyl‐4‐methylphenol to form benzylated products. This unique strategy should be useful in the design of other arene C?H/C?H cross‐couplings as well.  相似文献   

11.
Quaternary ammonium salts were synthesized in moderate to good yields through double oxidative C?H bond activation on azobenzenes. The mechanism of the highly regioselective reaction of 2‐azobiaryls with alkenes to give orange‐red‐fluorescent cinnolino[2,3‐f]phenanthridin‐9‐ium salts and 15H‐cinnolino[2,3‐f]phenanthridin‐9‐ium‐10‐ide is proposed to involve ortho C?H olefination of the 2‐azobiaryl compound with the alkene, intramolecular aza‐Michael addition, concerted metalation–deprotonation (CMD), reductive elimination, and oxidation.  相似文献   

12.
Wacker-type oxidative cyclization reactions have been the subject of extensive research for several decades, but few systematic mechanistic studies of these reactions have been reported. The present study features experimental and DFT computational studies of Pd(OAc)(2)/pyridine-catalyzed intramolecular aerobic oxidative amination of alkenes. The data support a stepwise catalytic mechanism that consists of (1) steady-state formation of a Pd(II)-amidate-alkene chelate with release of 1 equiv of pyridine and AcOH from the catalyst center, (2) alkene insertion into a Pd-N bond, (3) reversible β-hydride elimination, (4) irreversible reductive elimination of AcOH, and (5) aerobic oxidation of palladium(0) to regenerate the active trans-Pd(OAc)(2)(py)(2) catalyst. Evidence is obtained for two energetically viable pathways for the key C-N bond-forming step, featuring a pyridine-ligated and a pyridine-dissociated Pd(II) species. Analysis of natural charges and bond lengths of the alkene-insertion transition state suggest that this reaction is best described as an intramolecular nucleophilic attack of the amidate ligand on the coordinated alkene.  相似文献   

13.
Alkene insertion into Pd-N bonds is a key step in Pd-catalyzed oxidative amidation of alkenes. A series of well-defined Pd(II)-sulfonamidate complexes have been prepared and shown to react via insertion of a tethered alkene. The Pd-amidate and resulting Pd-alkyl species have been crystallographically characterized. The alkene insertion reaction is found to be reversible, but complete conversion to oxidative amination products is observed in the presence of O(2). Electronic-effect studies reveal that alkene insertion into the Pd-N bond is favored kinetically and thermodynamically with electron-rich amidates.  相似文献   

14.
A palladium-catalyzed aerobic oxidative annulation of indoles is described. We have demonstrated that a variety of factors influence these cyclizations, and in particular the electronic nature of the pyridine ligand is crucial. It is also remarkable that these oxidative cyclizations can proceed in good yield despite background oxidative decomposition pathways, testament to the facile nature with which molecular oxygen can serve as the direct oxidant for Pd(0). We have also shown that the mechanism most likely involves initial indole palladation (formal C-H bond activation) followed by migratory insertion and beta-hydrogen elimination.  相似文献   

15.
A series of monomeric arylpalladium(II) complexes LPd(Ph)X (L = 1-AdPtBu2, PtBu3, or Ph5FcPtBu2 (Q-phos); X = Br, I, OTf) containing a single phosphine ligand have been prepared. Oxidative addition of aryl bromide or aryl iodide to bis-ligated palladium(0) complexes of bulky, trialkylphosphines or to Pd(dba)2 (dba = dibenzylidene acetone) in the presence of 1 equiv of phosphine produced the corresponding arylpalladium(II) complexes in good yields. In contrast, oxidative addition of phenyl chloride to the bis-ligated palladium(0) complexes did not produce arylpalladium(II) complexes. The oxidative addition of phenyl triflate to PdL2 (L = 1-AdPtBu2, PtBu3, or Q-phos) also did not form arylpalladium(II) complexes. The reaction of silver triflate with (1-AdPtBu2)Pd(Ph)Br furnished the corresponding arylpalladium(II) triflate in good yield. The oxidative addition of phenyl bromide and iodide to Pd(Q-phos)2 was faster than oxidative addition to Pd(1-AdPtBu2)2 or Pd(PtBu3)2. Several of the arylpalladium complexes were characterized by X-ray diffraction. All of the arylpalladium(II) complexes are T-shaped monomers. The phenyl ligand, which has the largest trans influence, is located trans to the open coordination site. The complexes appear to be stabilized by a weak agostic interaction of the metal with a ligand C-H bond positioned at the fourth-coordination site of the palladium center. The strength of the Pd.H bond, as assessed by tools of density functional theory, depended upon the donating properties of the ancillary ligands on palladium.  相似文献   

16.
Pd(II) caught in the act: The diaryl Pd(II) intermediate of a Pd(II)-catalyzed oxidative biaryl bond formation proceeding via a double C-H bond activation has been isolated and fully characterized, including an X-ray crystal structure analysis. Stabilization due to chelation by adjacent pivaloyloxy and acetyl groups has allowed the isolation of this long-sought crucial intermediate. On gentle warming, the complex is transformed into a carbazole product, and the catalytically active Pd(II) species is regenerated by oxidation with Cu(II).  相似文献   

17.
The reaction of the cationic (PNP)Ir(I)(cyclooctene) complex (1) (PNP = 2,6-bis-(di-tert-butylphosphinomethyl)pyridine) with 2-butanone or 3-pentanone results in the selective, quantitative activation of a beta C-H bond, yielding O,C-chelated complexes. Calculations show that the selectivity is both kinetically (because of steric reasons in the rate determingin step (RDS)) and thermodynamically controlled, the latter as a result of carbonyl oxygen coordination in the product. The RDS is formation of the eta2-C,H intermediates from the complexed ketone intermediates. Water has a strong influence on the regioselectivity, and in its presence, reaction of 1 with 2-butanone gives also the alpha terminal C-H activation product. Computational studies suggest that water can stabilize the terminal alpha C-H activation product by hydrogen bonding, forming a six-membered ring with the ketone, as experimentally observed in the X-ray structure of the acetonyl hydride aqua complex.  相似文献   

18.
A mild, oxidant‐free, and selective Cp*CoIII‐catalyzed amidation of thioamides with robust dioxazolone amidating agents via C(sp3)−H bond activation to generate the desired amidated products is reported. The method is efficient and allows for the C−H amidation of a wide range of functionalized thioamides with aryl‐, heteroaryl‐, and alkyl‐substituted dioxazolones under the Cp*CoIII‐catalyzed conditions. The observed regioselectivity towards primary C(sp3)−H activation is supported by computational studies and the cyclometalation is proposed to proceed by means of an external carboxylate‐assisted concerted metalation/deprotonation mechanism. The reported method is a rare example of the use of a directing group other than the commonly used pyridine and quinolone classes for Cp*CoIII‐catalyzed C(sp3)−H functionalization and the first to exploit thioamides.  相似文献   

19.
Previous enantioselective Pd0‐catalyzed C?H activation reactions proceeding via the concerted metalation‐deprotonation mechanism employed either a chiral ancillary ligand, a chiral base, or a bimolecular mixture thereof. This study describes the development of new chiral bifunctional ligands based on a binaphthyl scaffold which incorporates both a phosphine and a carboxylic acid moiety. The optimal ligand provided high yields and enantioselectivities for a desymmetrizing C(sp2)?H arylation leading to 5,6‐dihydrophenanthridines, whereas the corresponding monofunctional ligands showed low enantioselectivities. The bifunctional system proved applicable to a range of substituted dihydrophenanthridines, and allowed the parallel kinetic resolution of racemic substrates.  相似文献   

20.
Oxidative Heck coupling of thiazole-4-carboxylates via palladium(II)-catalyzed C-H bond activation has been achieved in moderate to good yields. No ligand, and no acidic additive were used in the reaction. The results showed that this protocol tolerated a series of substitutions on the thiazole ring. A preliminary attempt of direct arylation with p-xylene via Pd(II)-catalyzed C-H bond activation has also been done.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号