首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
用示差扫描量热法(DSC)研究了基于二苯基甲烷二异氰酸酯(MDI)、乙二胺(ED)和聚己二酸丁二醇酯(PBA)(M.W.1975和M.W.1228)两系列嵌段聚酯型聚脲氨酯(PUU)弹性体,并考察了这些材料在不同退火条件下软段结晶的热变化。结果表明:在这些弹性体中,PBA 1975系列具有比PBA1228系列更低的软段玻璃化温度,说明前者的相分离较好.软段T_(gs)和硬段T_(gh)对硬段含量的变化不敏感.退火样品的DSC结果表明:软段结晶具有两个吸热峰,提出在软段相中存在两种晶型(P_l和P_h)的假设,分析了两种晶型产生的原因.  相似文献   

2.
通过退火保温调控聚氨酯(TPU)的相结构、结晶结构和氢键结构,进而调控其模量和介电常数(ε’),提高TPU的电驱动性能.使用扫描电子显微镜(SEM)和小角X射线(SAXS)研究TPU的结晶结构,基于红外光谱对TPU的氢键变化进行半定量分析,使用原子力显微镜(AFM)研究TPU的微相分离结构.结果显示,退火温度和时间不同导致TPU的聚集态结构各异,对模量、ε’和电驱动性能产生了较为复杂的影响.低温(80℃)退火处理后,硬相分布于连续的软段相,且形成了较多软段结晶,相分离程度和氢键破坏程度提高.相比于高温(150℃)退火处理,低温退火后获得较高ε’的同时保持了较低的模量,从而产生较大电致形变.值得注意的是,低温退火条件下产生大范围的软段结晶,使得软段分子链之间排布紧密,导致TPU电击穿强度大幅度提升,得到具有高击穿强度、高电致形变的TPU介电弹性体材料. 80℃退火处理6 h后,TPU的电击穿强度从退火处理前的25 kV/mm提高至32 kV/mm,最大电致形变从0.77%提高至3.3%,提高4.3倍.  相似文献   

3.
采用溶液共混-共沉淀的办法获得尼龙6及聚酰胺嵌段共聚物/尼龙6共混体系粉末,样品在260℃下熔融之后经程序降温的方法得到非淬火样品,然后分别在190℃下高温退火不同时间(0~48 h),采用示差扫描量热仪(DSC)、广角X射线衍射仪(WAXD)、偏光显微镜(POM)等表征手段研究热处理对体系晶体熔融行为和结晶结构的影响.结果表明,(1)在相同的热历史条件下,嵌段共聚物的存在影响了尼龙6的结晶行为及结晶结构;(2)退火处理对两种样品有着不同的影响,对于尼龙6体系,退火处理促进了非晶相向晶相的转变,大大提高样品的结晶完善程度和结晶度;对于共混体系,退火处理同样促进了非晶相向晶相的转变,同时形成新的α型和γ型结晶,体系的结晶完善程度明显提高,退火48 h后,结晶度比原始样品提高约84%.  相似文献   

4.
采用射频(RF)磁控溅射技术制备了用于全固态薄膜锂电池的非晶态和多晶LiCoO2阴极薄膜,利用XRD和SEM研究了沉积温度对LiCoO2薄膜结构和形貌的影响,并研究了高温退火后薄膜的电化学性能.研究结果表明,随著基片温度的不同,薄膜成分、表面形貌以及电化学行为有明显差异.室温沉积的薄膜很难消除薄膜中Li2CO3的影响,经过高温退火处理后也无法形成有效的多晶LiCoO2薄膜,而150℃沉积的薄膜经过高温退火后形成了有利于锂离子嵌入的多晶LiCoO2结构,薄膜显示出了较好的电化学性能.  相似文献   

5.
基于构建的iPB-1与iPP的双层热压复合膜,设计两相界面结构,并通过撕裂实验、扫描电子显微镜(SEM)和透射电子显微镜(TEM),研究高温退火温度与结晶温度对iPB-1与iPP间界面结构和性能的影响.结果表明,iPB-1/iPP复合样品经退火处理后,界面黏结强度明显下降,且退火温度越高,界面黏结强度和撕裂面粗糙度均越低.另外,经高温退火及两步降温结晶(即iPP于130℃先结晶、iPB-1于60℃后结晶)后,样品的平均界面黏结强度、撕裂面粗糙度、界面层厚度均比经一步降温结晶(iPP和iPB-1于60℃同时结晶)后的更高,且出现iPB-1分子链向iPP相区扩散的界面相结构.  相似文献   

6.
采用热分析、光学显微镜、拉伸测试与广角X-射线衍射等方法研究了双轴拉伸聚丙烯薄膜用均聚聚丙烯(h-BOPP)与含有少量乙烯单体的共聚聚丙烯(c-BOPP)材料的熔融、结晶特性和拉伸性能.研究发现,与均聚样品相比,共聚样品的等规度低,结晶速率慢,在相同的结晶温度条件下,其半结晶时间较长.退火处理后,结晶完善程度增加,均聚和共聚样品的断裂伸长率均比其未退火处理的低.但共聚样品的结晶速率慢,经过退火处理后其结晶完善性稍低于均聚样品,所以其断裂伸长率略大于均聚样品.经过拉伸形变后,样品的结晶结构被部分破坏,取向的非晶的分子链在后续的升温过程中很容易重构为更加完善的结晶结构,由于分子链结构的差异,均聚样品的结晶重构能力更强.阐释了由于链结构的不同导致的BOPP拉伸性能和结晶性能差异的机理.  相似文献   

7.
研究了聚丁烯-1(PB-1)及聚丁烯合金(PBA)中PB-1的溶液等温结晶行为.测定了PB-1在正庚烷溶剂中的溶解度曲线,采用膨胀计法研究了PB-1和PBA中PB-1组分的溶液等温结晶动力学.研究发现,等温结晶温度的升高会降低PB-1的结晶速率,但不影响PB-1在溶液中的结晶成核方式;PBA中PB-1组分的溶液等温结晶速率更快,聚丙烯(PP)组分的存在改变了PB-1的结晶成核方式.示差扫描量热仪(DSC)和广角X射线衍射仪(WAXD)测试表明PB-1的溶液等温结晶形成I′和III晶型,结晶温度的提高与PP组分的存在都会促进PB-1晶型III的产生.  相似文献   

8.
采用简单的磁控溅射方法, 在室温合成了CdS多晶薄膜. 在溅射CdS多晶薄膜过程中, 分别在Ar 气中通入0%、0.88%、1.78%、2.58%和3.40% (体积分数, φ)的O2, 得到不同O含量的CdS多晶薄膜. 通过X射线衍射仪、拉曼光谱仪、扫描电子显微镜、X射线光电子能谱仪、紫外-可见光谱仪对得到的CdS多晶薄膜进行表征.分析结果表明: O的掺入能得到结合更加致密, 晶粒尺寸更小的CdS多晶薄膜; 与溅射气体中没有O2时制备的CdS多晶薄膜的光学带隙(2.48 eV)相比, 当溅射气体中O2的含量为0.88%和1.78% (φ)时, 制备得到的CdS多晶薄膜具有更大的光学带隙, 分别为2.60和2.65 eV; 而当溅射气体中O2的含量为2.58%和3.40% (φ)时, 得到的CdS光学带隙分别为2.50 和2.49 eV, 与没有掺杂O的CdS的光学带隙(2.48 eV)相当; 当溅射气体中O2的含量为0.88% (φ)时, 制备的CdS多晶薄膜具有最好的结晶质量. 通过磁控溅射方法, 在溅射气体中O2含量为0.88% (φ)条件下制备的CdS多晶薄膜表面沉积了CdTe 多晶薄膜并在CdCl2气氛中进行了高温退火处理, 对退火前后的CdTe多晶薄膜进行了表征. 表征结果显示: CdS中掺入O能得到结合更紧密、退火后晶粒尺寸更大的CdTe多晶薄膜. 通过磁控溅射方法, 在CdS制备过程中于Ar 中掺入O2, 在室温就能得到具有更大光学带隙的CdS多晶薄膜, 该方法是一种简单和有效的方法, 非常适用于大规模工业化生产.  相似文献   

9.
用解偏振光强度法和DSC等方法研究了少量聚对苯甲酰胺(PBA)对尼龙6结晶化过程和热行为的影响.利用Avrami方程处理解偏振光强度法的实验结果,得到了尼龙6及含PBA 1%、2%尼龙6的n值分别为3.3、1.6、1.7.DSC结果表明,尼龙6中掺入少量的PBA会使结晶度提高,X射线衍射显示,当尼龙6中加入少量PBA后,晶格结构并未改变。  相似文献   

10.
非晶Co-Pt合金纳米线有序阵列的制备及其磁学性质   总被引:1,自引:0,他引:1  
通过直流电沉积方法,以多孔阳极氧化铝(AAO)为模板,在室温下成功制备出一维非晶态Co-Pt合金纳米线有序阵列. SEM和TEM分析表明:纳米线长度均约10 μm,直径35 nm;纳米线在阳极氧化铝模板孔内互相平行. XRD结果表明,制备的纳米线为非晶态结构,经过700 ℃退火处理后则转变为面心立方(FCC)多晶结构. 采用VSM(振动样品磁强计)对退火处理前后样品的矫顽力和剩磁比进行研究,结果表明:当外加磁场与纳米线平行时,非晶态Co-Pt合金纳米线的矫顽力高达1700 Oe,剩磁比为0.83,表现出明显的垂直磁各向异性;而退火处理则使其优秀的磁学性质消失. 退火前后不同的磁学性质源于其不同的微观结构. 非晶态的Co-Pt合金纳米线由于无磁晶各向异性竞争,进而使得由纳米线一维形态引起的形状各向异性起主导作用,使其显示了很好的垂直磁各向异性;而多晶样品由于磁晶各向异性与形状各向异性竞争,导致矫顽力和剩磁比迅速降低.  相似文献   

11.
The effects of nucleating agent multimethyl-benzilidene sorbitol (TM6) on crystallization and morphology of poly(butylene adipate) (PBA) with polymorphic crystal structures were studied by means of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and polarized optical micrographs (POM). In addition to the heterogeneous nucleation, TM6 changes the formation conditions of PBA polymorphic crystals. The addition of TM6 is favorable for the formation of PBA α-form crystals, resulting in the morphological changes from spherulites to interpenetrated fibrils. The influences of TM6 on enzymatic degradation of PBA were studied in terms of the morphological change and weight loss. The results indicate that the α-form crystals induced by TM6 show much slower degradation rate. This work provides an efficient method to control the polymorphic crystal structure and further to regulate the biodegradation rate of polymer materials through modulating the homogeneous and heterogeneous nucleation modes by adding nucleating agents.  相似文献   

12.
The introduction of aromatic butylene terephthalate (BT) units into the backbone chains of aliphatic poly(butylene adipate) (PBA) not only changes the mechanical performance of the resultant P(BA-co-BT) copolymers but also affects their biodegradability. Because of the polymorphism of PBA homopolymer, the copolymerized BT units may also influence the polymorphic crystal structure as well as the biodegradation behavior. In this work, three P(BA-co-BT) copolymers with BT contents as 10, 20, and 25 mol% were chosen to study their polymorphic crystal structure, thermal properties and enzymatic degradation by means of wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and gravimetric methods. The results reveal that the P(BA-co-BT) copolymers with BT contents below 25 mol% can form polymorphic crystal structures after melt-crystallization at different temperatures. However, the recrystallization and transformation of polymorphic crystals are strongly affected by the rigid BT units. The enzymatic degradation rates of P(BA-co-BT) copolymers decrease with increasing the BT contents. The influences of the BT units on the polymorphism and enzymatic degradation are discussed in terms of the motion of PBA chains that copolymerized with BT units. It has been concluded from the examination of solid-state microstructure that the influence of the aromatic BT units on the motion of biodegradable PBA chains heavily influences the biodegradability.  相似文献   

13.
甘志华 《高分子科学》2014,32(9):1243-1252
Oriented and non-oriented Teflon films, which were found to have the same crystalline structure, but different surface morphologies, were used to sandwich poly(butylene adipate)(PBA) films during isothermal crystallization. It was found that both the Teflon surface structure and the PBA polymorphic structure are the determining factors to induce epitaxial crystallization. The oriented Teflon film was able to induce epitaxial crystallization of PBA α crystal, while the non-oriented Teflon did not induce any epitaxial crystallization of PBA. Epitaxial crystallization did not occurred for PBA β crystals between neither the oriented nor the non-oriented Teflon films. The enzymatic degradation rate of PBA films was not determined by the epitaxial crystallization, in fact it was still dependent on the polymorphic crystal structure of PBA. The morphological changes of PBA films after enzymatic degradation confirmed again that the epitaxial crystallization only occurred for the PBA film with α crystal structure which was produced by being sandwiched between oriented Teflon films, and it happened only on the surface of PBA films.  相似文献   

14.
Polymorphic crystals and complex multiple melting behavior in an aliphatic biodegradable polyester, poly(butylene adipate) (PBA), were thoroughly examined by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). Further clarification on mechanisms of multiple melting peaks related to polymorphic crystal forms in PBA was attempted. More stable α‐form crystal is normally favored for crystallization from melt at higher temperatures (31–35 °C), or upon slow cooling from the melt; while the β‐form is the favored species for crystallization at low temperatures (25–28 °C). We further proved that PBA crystallization could also result in all α‐form even at low temperatures (25–28 °C) if it crystallized with the presence of prior α‐form nuclei. PBA packed with both crystal forms could display as many as four melting peaks (P1 ? P4, in ascending temperature order). However, PBA initially containing only the α‐crystal exhibited dual melting peaks of P1 and P3, which are attributed to dual lamellar distributions of the α‐crystal. By contrast, PBA initially containing only the β‐crystal could also exhibit dual melting peaks (P2 and P4) upon scanning. While P2 is clearly associated with melting of the initial β‐crystal, the fourth melting peak (P4), appearing rather broad, was determined to be associated with superimposed thermal events of crystal transformation from β‐ to α‐crystal and final re‐melting of the new re‐organized α‐crystal. Crystal transformation from one to the other or vice versa, lamellae thickening, annealing at molten state, and influence on crystal polymorphism in PBA were analyzed. Relationships and mechanisms of dual peaks for isolate α‐ or β‐crystals in PBA are discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1662–1672, 2005  相似文献   

15.
王学川  晏超 《高分子科学》2014,32(4):488-496
The effects of crystallization temperature and blend ratio on the polymorphic crystal structures of poly(butylene adipate)(PBA) in poly(butylene succinate)(PBS)/poly(butylene adipate)(PBS/PBA) blends were studied by means of differential scanning calorimetry(DSC), wide-angle X-ray diffraction(XRD) and atomic force microscopy(AFM). It was revealed that the polymorphism of PBA can be regulated by the blend ratio even in a non-isothermal crystallization process. The results demonstrate that high temperature favors flat-on α crystals, while low temperature contributes to edge-on β crystals. It was also found that the effect of blend ratio on the crystallization mechanism of PBA is well coincident with that of the crystallization temperature. The increment of PBS content in the PBS/PBA blend gives rise to more β-form crystals of PBA. For those PBS/PBA blends with low PBA content, the interlamellar phase segregation of PBA makes its molecular chains so difficult to diffuse from one isolated microdomain to another that high crystallization temperature and sufficiently long crystallization time will be required if the PBA α-type crystals are targeted.  相似文献   

16.
Poly(butyl acrylate) (PBA)/sodium silicate (SS) nanocomposites were prepared via emulsifier-free emulsion technique in presence of Cu(II)/glycine chelate complex and ammonium persulfate (APS) initiator. The strongly hydrophobic PBA was intercalated into the hydrophilic SS layer. Since the interlayers of silicate were filled with sodium cations, the hydrophilic properties were enhanced and lead to high degree of swelling. The formation of the PBA/SS nanocomposite was confirmed by infrared spectra (IR). Furthermore, as evidenced by transmission electron microscopy (TEM), the composite so obtained was found to have nanoscale structure. X-ray diffraction (XRD) was used to characterize the nanoscale dispersion of the layer silicate and useful for measurement of d-spacing in interlayer system. It was found from thermogravimetric analysis that PBA/SS nanocomposites had more thermal stability as compared to raw PBA due to intercalation. Burning test of the nanocomposites performance exhibited a flame retardant property, which was also verified from cone calorimeter analysis. For its commercialization, the ecological friendly nature was studied via biodegradation and was found to have better biodegradability than the raw PBA.  相似文献   

17.
In‐depth interpretation of ring‐banded spherulitic morphology, crystals, polymorphism, and complex melting behavior in poly(1,4‐butylene adipate) (PBA) were analyzed via a procedure of designing composite core‐shell spherulites, in which two lamellar patterns (ring‐band vs. ringless) were packed by subjecting to crystallization at two‐step temperature schemes with specific temperatures and times. By heating to 52 °C and holding at that temperature for 30 min annealing, the core can be stripped off by melting, and analysis specifically on the ring‐shell portion (with the ringless core stripped by controlled melting) proves that the highest melting peak (P4 at 55–57 °C) is likely associated with melting of the ring‐band lamellae. Furthermore, the unusually complex multiple melting in PBA can be attributed to all three widely proposed mechanisms: (1) multiple types of lamellae preexisting in crystallized PBA, (2) scan/heating induced remelting/reorganization, and (3) polymorphism of dual crystal cells. In addition, this study evidently shows that the extinction rings within the ring‐banded shell, regardless of alternate edge‐on and flat‐on mechanism or alternative origins, can be of all singly α‐crystal form, either initially or upon postheating temperature‐induced transformation. Thus, the type of crystal forms (α or β) in polymorphic PBA is mainly associated with temperature of crystallization (Tc = 28 or 35 °C), and not likely with lamellar orientation (flat‐on or edge‐on). © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 892–899, 2008  相似文献   

18.
We successfully use a co-precipitation method to prepare inclusion complex between poly(butylene adipate) (PBA) chains (guest component) and urea molecules (host component). The PBA/urea inclusion complex is confirmed to adopt a hexagonal crystal modification with lattice parameters of a = 8.14 Å and c = 10.92 Å, and the interaction between PBA chains and urea is van der Waals force. The singly isolated PBA chains are suggested to take some gauche conformation, which is different from the all-trans conformation in β-form PBA. Furthermore, we employ the isolated PBA chains which are uniformly pre-established in a specific conformation in urea channels to regulate the crystal form of PBA for the first time. After removing the host urea molecules, the coalesced PBA chains are found to solely crystallize into α-form crystals at different coalescing temperatures. By comparing the FTIR spectra, it is found that PBA chains in inclusion complex plausibly contain some similar conformers as those in α-form crystal, which is suggested to be the intrinsic reason for the sole formation of α-form crystals. This research proves that inclusion complex can be used as a very effective method to regulate polymorphism of semi-crystalline polymers.  相似文献   

19.
采用直流磁控溅射方法,在Si(100)单晶衬底上获得了γ′-Fe4N纳米晶薄膜样品.将样品在真空中分别于300,400,500,600,700和800℃下进行热处理,利用XRD,SEM和VSM等测试手段对样品的结构、形貌和磁性进行表征.结果表明,热处理温度在300~500℃时,在γ′-Fe4N纳米晶粒的界面处形成了Fe8N包裹层,600℃时,Fe8N包裹层转变为α-Fe,当热处理温度≥700℃时,样品全部转变为α-Fe.γ′-Fe4N薄膜样品在600℃以下温度热处理可保持其主相γ′-Fe4N的结构稳定,而其软磁性能并未发生明显的减弱.  相似文献   

20.
Polymorphism in crystals is known since 1822 and the credit goes to Mitscherlich who realized the existence of different crystal structures of the same compound while working with some arsenate and phosphate salts. Later on, this phenomenon was observed also in organic crystals. With the advent of different technologies, especially the easy availability of single crystal XRD instruments, polymorphism in crystals has become a common phenomenon. Almost 37 % of compounds (single component) are polymorphic to date. As the energies of the different polymorphic forms are very close to each other, small changes in crystallization conditions might lead to different polymorphic structures. As a result, sometimes it is difficult to control polymorphism. For this reason, it is considered to be a nuisance to crystal engineering. It has been realized that the property of a material depends not only on the molecular structure but also on its crystal structure. Therefore, it is not only of interest to academia but also has widespread applications in the materials science as well as pharmaceutical industries. In this review, we have discussed polymorphism which causes significant changes in materials properties in different fields of solid-state science, such as electrical, magnetic, SHG, thermal expansion, mechanical, luminescence, color, and pharmaceutical. Therefore, this review will interest researchers from supramolecular chemistry, materials science as well as medicinal chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号