首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. E. Amritkar 《Pramana》2008,71(2):195-201
We study the synchronization of coupled dynamical systems on networks. The dynamics is governed by a local nonlinear oscillator for each node of the network and interactions connecting different nodes via the links of the network. We consider existence and stability conditions for both single- and multi-cluster synchronization. For networks with time-varying topology we compare the synchronization properties of these networks with the corresponding time-average network. We find that if the different coupling matrices corresponding to the time-varying networks commute with each other then the stability of the synchronized state for both the time-varying and the time-average topologies are approximately the same. On the other hand, for non-commuting coupling matrices the stability of the synchronized state for the time-varying topology is in general better than the time-average topology.   相似文献   

2.
Stability of synchronization in delay-coupled networks of identical units generally depends in a complicated way on the coupling topology. We show that for large coupling delays synchronizability relates in a simple way to the spectral properties of the network topology. The master stability function used to determine the stability of synchronous solutions has a universal structure in the limit of large delay: It is rotationally symmetric around the origin and increases monotonically with the radius in the complex plane. This allows a universal classification of networks with respect to their synchronization properties and solves the problem of complete synchronization in networks with strongly delayed coupling.  相似文献   

3.
We study a network of coupled logistic maps whose interactions occur with a certain distribution of delay times. The local dynamics is chaotic in the absence of coupling and thus the network is a paradigm of a complex system. There are two regimes of synchronization, depending on the distribution of delays: when the delays are sufficiently heterogeneous the network synchronizes on a steady-state (that is unstable for the uncoupled maps); when the delays are homogeneous, it synchronizes in a time-dependent state (that is either periodic or chaotic). Using two global indicators we quantify the synchronizability on the two regimes, focusing on the roles of the network connectivity and the topology. The connectivity is measured in terms of the average number of links per node, and we consider various topologies (scale-free, small-world, star, and nearest-neighbor with and without a central hub). With weak connectivity and weak coupling strength, the network displays an irregular oscillatory dynamics that is largely independent of the topology and of the delay distribution. With heterogeneous delays, we find a threshold connectivity level below which the network does not synchronize, regardless of the network size. This minimum average number of neighbors seems to be independent of the delay distribution. We also analyze the effect of self-feedback loops and find that they have an impact on the synchronizability of small networks with large coupling strengths. The influence of feedback, enhancing or degrading synchronization, depends on the topology and on the distribution of delays.  相似文献   

4.
Synchrony is one of the most common dynamical states emerging on networks. The speed of convergence towards synchrony provides a fundamental collective time scale for synchronizing systems. Here we study the asymptotic synchronization times for directed networks with topologies ranging from completely ordered, grid-like, to completely disordered, random, including intermediate, partially disordered topologies. We extend the approach of master stability functions to quantify synchronization times. We find that the synchronization times strongly and systematically depend on the network topology. In particular, at fixed in-degree, stronger topological randomness induces faster synchronization, whereas at fixed path length, synchronization is slowest for intermediate randomness in the small-world regime. Randomly rewiring real-world neural, social and transport networks confirms this picture.  相似文献   

5.
We consider synchronization properties of coupled dynamics on time-varying networks and the corresponding time-average network. We find that if the different Laplacians corresponding to the time-varying networks commute with each other then the stability of the synchronized state for both the time-varying and the time-average topologies are approximately the same. On the other hand for noncommuting Laplacians the stability of the synchronized state for the time-varying topology is in general better than the time-average topology.  相似文献   

6.
Bu Zhi Qin 《Physics letters. A》2010,374(38):3942-3950
Global synchronization of directed networks with switching topologies is investigated. It is found that if there exists at least one directed spanning tree in the network with the fixed time-average topology and the time-average topology is achieved sufficiently fast, the network will reach global synchronization for appreciate coupling strength. Furthermore, this appreciate coupling strength may be obtained by local adaptive approach. A sufficient condition about the global synchronization is given. Numerical simulations verify the effectiveness of the adaptive strategy.  相似文献   

7.
Global synchronization of a class of directed dynamical networks with switching topologies is investigated. It is found that if there is a directed spanning tree in the fixed time-average of network topology and the time-average is achieved sufficiently fast, then the network will reach global synchronization for sufficiently large coupling strength.  相似文献   

8.
Synchronization reveals topological scales in complex networks   总被引:2,自引:0,他引:2  
We study the relationship between topological scales and dynamic time scales in complex networks. The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators. In the synchronization process, modular structures corresponding to well-defined communities of nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology, and spectral graph analysis.  相似文献   

9.
Diffusive electrical connections in neuronal networks are instantaneous, while excitatoryor inhibitory couplings through chemical synapses contain a transmission time-delay.Moreover, chemical synapses are nonlinear dynamical systems whose behavior can bedescribed by nonlinear differential equations. In this work, neuronal networks withdiffusive electrical couplings and time-delayed dynamic chemical couplings are considered.We investigate the effects of distributed time delays on phase synchronization of burstingneurons. We observe that in both excitatory and Inhibitory chemical connections, the phasesynchronization might be enhanced when time-delay is taken into account. This distributedtime delay can induce a variety of phase-coherent dynamical behaviors. We also study thecollective dynamics of network of bursting neurons. The network model presents theso-called Small-World property, encompassing neurons whose dynamics have two time scales(fast and slow time scales). The neuron parameters in such Small-World network, aresupposed to be slightly different such that, there may be synchronization of the bursting(slow) activity if the coupling strengths are large enough. Bounds for the criticalcoupling strengths to obtain burst synchronization in terms of the network structure aregiven. Our studies show that the network synchronizability is improved, as itsheterogeneity is reduced. The roles of synaptic parameters, more precisely those of thecoupling strengths and the network size are also investigated.  相似文献   

10.
We study synchronization transitions and pattern formation on small-world networks consisting of Morris-Lecar excitable neurons in dependence on the information transmission delay and the rewiring probability. In addition, networks formed via gap junctional connections and coupling via chemical synapses are considered separately. For gap-junctionally coupled networks we show that short delays can induce zigzag fronts of excitations, whereas long delays can further detriment synchronization due to a dynamic clustering anti-phase synchronization transition. For the synaptically coupled networks, on the other hand, we find that the clustering anti-phase synchronization can appear as a direct consequence of the prolongation of information transmission delay, without being accompanied by zigzag excitatory fronts. Irrespective of the coupling type, however, we show that an appropriate small-world topology can always restore synchronized activity if only the information transmission delays are short or moderate at most. Long information transmission delays always evoke anti-phase synchronization and clustering, in which case the fine-tuning of the network topology fails to restore the synchronization of neuronal activity.  相似文献   

11.
韩敏  张雅美  张檬 《物理学报》2015,64(7):70506-070506
针对同时具有节点时滞和耦合时滞的时变耦合复杂网络的外同步问题, 提出一种简单有效的自适应牵制控制方法. 首先构建一种贴近实际的驱动-响应复杂网络模型, 在模型中引入双重时滞和时变不对称外部耦合矩阵. 进一步设计易于实现的自适应牵制控制器, 对网络中的一部分关键节点进行控制. 构造适当的Lyapunov泛函, 利用 LaSalle不变集原理和线性矩阵不等式, 给出两个复杂网络实现外同步的充分条件. 最后, 仿真结果表明所提同步方法的有效性, 同时揭示耦合时滞对同步收敛速度的影响.  相似文献   

12.
张丽  杨晓丽  孙中奎 《物理学报》2013,62(24):240502-240502
时滞和噪声在复杂网络中普遍存在,而含有耦合时滞和噪声摄动的耦合网络同步的研究工作却极其稀少. 本文针对噪声环境下具有不同节点动力学、不同拓扑结构及不同节点数目的耦合时滞网络,提出了两个网络之间的广义投影滞后同步. 首先,构建了更加贴近现实的驱动-响应网络同步的理论框架;其次,基于随机时滞微分方程LaSalle不变性原理,严格证明了在合理的控制器作用下,驱动网络和响应网络在几乎必然渐近稳定性意义下能够取得广义投影滞后同步;最后,借助于计算机仿真,通过具体的网络模型验证了理论推理的有效性. 数值模拟结果表明,驱动网络与响应网络不但能够达到广义投影滞后同步,而且同步效果不依赖于耦合时滞和比例因子的选取,同时也揭示了更新增益和耦合时滞对同步收敛速度的显著性影响. 关键词: 复杂网络 广义投影滞后同步 随机噪声 时滞  相似文献   

13.
The collective dynamics of coupled two-dimensional chaotic maps on complex networks is known to exhibit a rich variety of emergent properties which crucially depend on the underlying network topology. We investigate the collective motion of Chirikov standard maps interacting with time delay through directed links of gene regulatory network of bacterium Escherichia coli. Departures from strongly chaotic behavior of the isolated maps are studied in relation to different coupling forms and strengths. At smaller coupling intensities the network induces stable and coherent emergent dynamics. The unstable behavior appearing with increase of coupling strength remains confined within a connected subnetwork. For the appropriate coupling, network exhibits statistically robust self-organized dynamics in a weakly chaotic regime.  相似文献   

14.
于文婷  张娟  唐军 《物理学报》2017,66(20):200201-200201
神经元膜电位的受激发放在神经系统的信息传递中起着重要作用.基于一个受动态突触刺激的突触后神经元发放模型,采用数值模拟和傅里叶变换分析的方法研究了动态突触、神经耦合与时间延迟对突触后神经元发放的影响.结果发现:突触前神经元发放频率与Hodgkin-Huxley神经元的固有频率发生共振决定了突触后神经元发放的难易,特定频率范围内的电流刺激有利于神经元激发,动态突触输出的随机突触电流中这些电流刺激所占的比率在很大程度上影响了突触后神经元的发放次数;将突触后神经元换成神经网络后,网络中神经元之间的耦合可以促进神经元的发放,耦合中的时间延迟可以增强这种促进作用,但是不会改变神经耦合对神经元发放的促进模式.  相似文献   

15.
In this paper networks that optimize a combined measure of local and global synchronizability are evolved. It is shown that for low coupling improvements in the local synchronizability dominate network evolution. This leads to an expressed grouping of elements with similar native frequency into cliques, allowing for an early onset of synchronization, but rendering full synchronization hard to achieve. In contrast, for large coupling the network evolution is governed by improvements towards full synchronization, preventing any expressed community structure. Such networks exhibit strong coupling between dissimilar oscillators. Albeit a rapid transition to full synchronization is achieved, the onset of synchronization is delayed in comparison to the first type of networks. The paper illustrates that an early onset of synchronization (which relates to clustering) and global synchronization are conflicting demands on network topology.  相似文献   

16.
We review our recent work on the synchronization of a network of delay-coupled maps, focusing on the interplay of the network topology and the delay times that take into account the finite velocity of propagation of interactions. We assume that the elements of the network are identical (N logistic maps in the regime where the individual maps, without coupling, evolve in a chaotic orbit) and that the coupling strengths are uniform throughout the network. We show that if the delay times are sufficiently heterogeneous, for adequate coupling strength the network synchronizes in a spatially homogeneous steady state, which is unstable for the individual maps without coupling. This synchronization behavior is referred to as ‘suppression of chaos by random delays’ and is in contrast with the synchronization when all the interaction delay times are homogeneous, because with homogeneous delays the network synchronizes in a state where the elements display in-phase time-periodic or chaotic oscillations. We analyze the influence of the network topology considering four different types of networks: two regular (a ring-type and a ring-type with a central node) and two random (free-scale Barabasi-Albert and small-world Newman-Watts). We find that when the delay times are sufficiently heterogeneous the synchronization behavior is largely independent of the network topology but depends on the network’s connectivity, i.e., on the average number of neighbors per node.   相似文献   

17.
Xiaoqun Wu 《Physica A》2008,387(4):997-1008
Many existing papers investigated the geometric features, control and synchronization of complex dynamical networks provided with certain topology. However, the exact topology of a network is sometimes unknown or uncertain. Based on LaSalle’s invariance principle, we propose an adaptive feedback technique to identify the exact topology of a weighted general complex dynamical network model with time-varying coupling delay. By receiving the network nodes evolution, the topology of such a kind of network with identical or different nodes, or even with varying topology can be monitored. In comparison with previous methods, time delay is taken into account in this simple, analytical and systematic synchronization-based technique. Particularly, the weight configuration matrix is not necessarily symmetric or irreducible, and the inner-coupling matrix need not be symmetric. Illustrative simulations are provided to verify the correctness and effectiveness of the proposed scheme.  相似文献   

18.
Time scale synchronization in networks of chaotic microwave oscillators with the different topologies of the links between nodes has been studied. As a node element of the network the one-dimensional distributed model of the low-voltage vircator has been used. To characterize the degree of synchronization in the whole network the synchronization index has been introduced. The transition to the synchronous regime is shown to take place via cluster time scale synchronization. Meanwhile, the spectral structure of the output signals is complicated sufficiently which allows using such devices in a number of practical applications.  相似文献   

19.
Complex networks consisting of several interacting layers allow for remote synchronization of distant layers via an intermediate relay layer. We extend the notion of relay synchronization to chimera states, and study the scenarios of relay synchronization in a three-layer network of FitzHugh–Nagumo (FHN) oscillators, where each layer has a nonlocal coupling topology. Varying the coupling strength and time delay in the inter-layer connections, we observe relay synchronization between chimera states, i.e., complex spatio-temporal patterns of coexisting coherent and incoherent domains, in the outer network layers. Special regimes where only the coherent domains of chimeras are synchronized, and the incoherent domains remain desynchronized, as well as transitions between different synchronization regimes are analyzed.  相似文献   

20.
Previous studies about synchronization of Kuramoto oscillators in complex networks have shown how local patterns of synchronization emerge differently in homogeneous and heterogeneous topologies. The main difference between the paths to synchronization in both topologies is rooted in the growth of the largest connected component of synchronized nodes when increasing the coupling between the oscillators. Nevertheless, a recent study focusing on this same phenomenon has claimed the contrary, stating that the statistical distribution of synchronized clusters for both types of networks is similar. Here we provide extensive numerical evidences that confirm the original claims, namely, that the microscopic and mesoscopic dynamics of the synchronized patterns indeed follow different routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号