首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
In this paper, we demonstrate a simple facet-based method for single crystal electrochemical study. Based on the design of a simple and proper electrochemical cell using a cone-shaped pipette tip, one of the natural (1 1 1) facets of a Au single crystal bead has been directly used for electrochemical measurements. Since the processes of orientating, cutting and mechanical polishing are avoided, misorientation and mechanical damage to single crystal surface can be eliminated and reliable data are expected. The advantages of the method have been proved by the nice cyclic voltammogram of Ag underpotential deposition (UPD), a system that has shown large discrepancy in cyclic voltammograms reported by different laboratories due to the dissimilarity of the surface state. The sharp and reversible UPD peaks from the facet-based measurements resemble the best of the reported data in the literature. The method can be extended to (1 1 1) surfaces of some other metals.  相似文献   

2.
Underpotential deposition (UPD) of Ag on an Au(1 1 1) coated with a self-assembled monolayer (SAM) of decanethiol gives Ag islands having monatomic height. After reductive desorption of the SAM, Ag monolayer islands were exposed and their catalytic activities for oxygen reduction were examined by voltammetry and hanging meniscus rotating disk (HMRD) measurements. Comparison of electrochemical properties and STM images of electrodes revealed that an island with less than 750 Ag-atoms showed two-electron reduction and that an island with over than 4000 Ag-atoms is necessary to show the original ability of four-electron reduction.  相似文献   

3.
Stability of underpotentially deposited (upd) Ag layers on Au(1 1 1) surface was investigated by surface X-ray scattering (SXS). While the complete pseudomorphic Ag bilayer on Au(1 1 1) surface obtained by upd at 10 mV (vs. Ag/Ag+) was maintained its structure even after the circuit was disconnected and the surface was exposed to ambient atmosphere, the pseudomorphic Ag monolayer obtained by upd at 50 mV was converted to a partial bilayer with the coverage of 0.66 and 0.46 ML for the 1st and 2nd layer, respectively. These results show that Ag bilayer is structurally more stable than Ag monolayer on Au(1 1 1) and Ag atoms of the upd monolayer move around on the Au(1 1 1) surface without potential control.  相似文献   

4.
Au/polyaniline (PANI)–poly(4-styrenesulfonate) (PSS) hybrid nanoarray is fabricated for biomolecular sensing in neutral aqueous solutions. Firstly, an array of one-dimensional Au nanorods (diameter = ca. 200 nm, length = ca. 3 μm) is formed by a template-electrodeposition method using a porous anodic alumina membrane, and then a thin PANI–PSS composite layer is electropolymerized on the surface of the Au nanorods. The resulting Au/PANI–PSS hybrid nanoarray exhibits a quasi-reversible redox electrochemical process at ca. +0.11 V and electrocatalytic oxidation of reduced β-nicotinamide adenine dinucleotide (NADH) is attained with a detection limit of 0.3 μM in a neutral solution.  相似文献   

5.
Gold nanoparticles have been prepared by two methods: chemical (ex-situ, Au/C) by two phase protocol, and electrochemical (in-situ, Au/Pani) by electroreduction of gold ions on a polyaniline film and compared as anode catalysts in a glucose microfluidic fuel cell. In this paper the structural characteristics and electrocatalytic properties were investigated by X-ray diffraction and electrochemical measurements. The catalytic behavior of both anodes was tested in a microfluidic fuel cell with a reference electrode incorporated, by means of linear sweep voltammetry (LSV), showing a cathodic shift in the glucose oxidation peak for Au/Pani. Results show a higher power density (0.5 mW cm? 2) for Au/C anode compared with an already reported value, where a glucose microfluidic fuel cell was used in similar conditions.  相似文献   

6.
This study demonstrates a new kind of single-walled carbon nanotubes (SWNT)-based compartment-less glucose/O2 biofuel cell (BFC) with glucose dehydrogenase (GDH) and bilirubin oxidase (BOD) as the anodic and cathodic biocatalysts, respectively, and with poly(brilliant creysl blue) (BCB) adsorbed onto SWNT nanocomposite as the electrocatalyst for the oxidation of NADH. The prepared GDH-polyBCB-SWNT bioanode exhibits an excellent electrocatalytic activity toward the oxidation of glucose biofuel; in 0.10 M phosphate buffer containing 20 mM NAD+ and 100 mM glucose, the oxidation of glucose commences at −0.25 V and the current reaches its maximum of 310 μA/cm2 at −0.05 V vs. Ag/AgCl. At the BOD-SWNT biocathode, a high potential output is achieved for the reduction of O2 due to the direct electron transfer property of BOD at the SWNTs. In 0.10 M phosphate buffer, the electrocatalytic reduction of O2 is observed at a high potential of 0.53 V vs. Ag/AgCl with an electrocatalytic current plateau of ca. 28 μA/cm2 at 0.45 V under ambient air and ca. 102 μA/cm2 under O2-saturated atmosphere. In 0.10 M phosphate buffer containing 10 mM NAD+ and 40 mM glucose under O2-saturated atmosphere, the power density of the assembled SWNT-based glucose/O2 BFC reaches 53.9 μW/cm2 at 0.50 V. The performance and the stability of the glucose/O2 BFC are also evaluated in serum. This study could offer a new route to the development of new kinds of enzymatic BFCs with a high performance and provide useful information on future studies on the enzymatic BFCs as in vivo power sources.  相似文献   

7.
This study demonstrated a novel nanographene platelets (NGPs)-based glucose/O2 biofuel cell (BFC) with the glucose oxidase (GOD) as the anodic biocatalysts and the laccase as the cathodic biocatalysts. The GOD/NGPs-modified electrode exhibited good catalytic activity towards glucose oxidation and the laccase/NGPs-modified electrode exhibited good catalytic activity towards O2 electroreduction. The maximum power density was ca. 57.8 μW cm? 2 for the assembled glucose/O2 NGPs-based BFC. These results indicated that the NGPs were very useful for the future development of novel carbon-based nanomaterials BFC device.  相似文献   

8.
In situ and real-time surface differential diffraction (SDD) has been used to study the underpotential deposition (UPD) of Cd on Au(1 1 1) in sulfuric acid media. Comparison of SDD results in sulfate electrolytes with and without the presence of Cd2+ ions reveals that the surface reconstruction associated with the sulfate adsorption and desorption dominates the structural effect. It is also found that the reconstructed gold surface is stable upon Cd UPD process. In the initial stages of UPD, Cd atoms bind to the surface in bridge sites. This is followed by an adlayer structure with Cd adsorption in threefold hollow sites before Au/Cd intermixing takes place.  相似文献   

9.
We characterized the electrocatalytic activity of platinum electrode modified by underpotential deposited lead (PtPbupd) for a formic acid (HCOOH) oxidation and investigated the influence on the power performance of direct formic acid fuel cells (DFAFC). Based on the electrochemical analysis using cyclic voltammetry and chronoamperometry, PtPbupd electrode modified by underpotential deposition (UPD) exhibited significantly enhanced catalytic activity for HCOOH oxidation below anodic overpotential of 0.4 V (vs. SCE). Multi-layered PtPbupd electrode structure of Pt/Pbupd/Pt resulted in more stable and enhanced performance using 50% reduced loading of anode catalyst. The performance of multi-layered PtPbupd anode is about 120 mW/cm2 at 0.4 V and it also showed a sustainable cell activity of 0.52 V at an application of constant current loading of 110 mA/cm2.  相似文献   

10.
Platinum–cobalt (PtCo) alloy nanoparticles (NPs) are successfully fabricated by ultrasonic-electrodeposition method, using an inclusion complex (IC) film of functionalized cyclodextrin (CD)–ionic liquid (IL) as support. The morphology and composition of the PtCo alloy NPs are characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. It is found that they are well-dispersed on the CD–IL surface and exhibit many unique features. The resulting modified glassy carbon electrode shows excellent catalytic activity for glucose oxidation. Under the physiological condition, the oxidation current of glucose is linear to its concentration up to 20 mM with sensitivity of 13.7 μA mM?1 cm?2. In addition, the interference from the oxidation of ascorbic acid and uric acid could be effectively avoided. Therefore, it is promising as a nonenzymatic glucose sensor.  相似文献   

11.
A glassy carbon electrode (GCE) modified with electrodeposited bimetallic Au–Pt nanoparticles (Au–PtNPs) was applied to sensitively detect As(III) by linear sweep anodic stripping voltammetry (LSASV). In 0.5 M aqueous H2SO4, atomic hydrogen and molecular hydrogen were easily electrogenerated at the Pt sites on Au–PtNPs/GCE, which can chemically reduce As(III) to As(0) and enhance the cathodic preconcentration of As(0) at both the Pt sites and the neighboring Au sites. Since the As(0)–Au affinity is weaker than the As(0)–Pt affinity, the preconcentrated As(0) can be rapidly oxidized on/near the surface Au sites of Au–PtNPs/GCE, yielding sharper and higher LSASV current peaks. Under optimum conditions (700 s preconcentration at − 0.1 V, 5 V s 1), the LSASV peak current for the As(0)–As(III) oxidation responded linearly to As(III) concentration from 0.005 to 3.0 μM with a limit of detection (LOD) of 3.7 nM (0.28 ppb) (S/N = 3), while that for the As(III)–As(V) oxidation was linear with As(III) concentration from 0.01 to 3.0 μM with a LOD of 6.0 nM (0.45 ppb) (S/N = 3). This method was applied for analysis of As(III) in real water samples.  相似文献   

12.
The electrochemical reactivity of polarized metals such as platinum, palladium, and rhodium toward carbon dioxide in aprotic dimethylformamide (DMF) solutions of tetramethylammonium tetrafluoroborate (TMABF4) is presented. The capacity of metals such as Pd and Pt to cathodically insert the electrolytes under superdry conditions (via the generation of organometallic intermediates analogous to Zintl metals) is combined with the concomitant carboxylation of those metals within a potential range from − 1 V to − 2.5 V vs. Ag/AgCl/KCl(sat). Under these conditions, dense surface carboxylation of these precious metals occurs, totally suppressing their catalytic activity. Thick layers of the carboxylated metals (platinum-CO2 and palladium-CO2) are chemically stable and may then be further functionalized for specific applications.  相似文献   

13.
Glucose-oxidizing enzymes are widely used in electrochemical biosensors and biofuel cells; in most applications glucose oxidase, an enzyme with non-covalently bound FAD and low capability of direct electronic communications with electrodes, is used. Here, we show that another glucose-oxidizing enzyme with a covalently bound FAD center, hexose oxidase (HOX), adsorbed on graphite, exhibits a pronounced non-catalytic voltammetric response from its FAD, at − 307 mV vs. Ag/AgCl, pH 7, characterized by the heterogeneous electron transfer (ET) rate constant of 29.2 ± 4.5 s 1. Direct bioelectrocatalytic oxidation of glucose by HOX proceeded, although, with a 350 mV overpotential relative to FAD signals, which may be connected with a limiting step in biocatalysis under conditions of the replacement of the natural redox partner, O2, by the electrode; mediated bioelectrocatalysis was consistent with the potentials of a soluble redox mediator used. The results allow development of HOX-based electrochemical biosensors for sugar monitoring and biofuel cells exploiting direct ET of HOX, and, not the least, fundamental studies of ET non-complicated by the loss of FAD from the protein matrix.  相似文献   

14.
Gold (Au) films with open interconnected macroporous walls and nanoparticles have been successfully sculptured using the hydrogen bubble dynamic template synthesis followed by a galvanic replacement reaction. Copper (Cu) films with open interconnected macroporous walls and nanoparticles were synthesized using the electrochemically generated hydrogen bubbles as a dynamic template. Then through a galvanic replacement reaction between the porous Cu sacrificial templates and KAu(CN)2 in solution, the porous Cu films were converted to porous Au films with the similar morphologies. Additional electrochemical dealloying process was introduced to remove the remaining Cu from the porous Au films. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), X-ray diffraction (XRD) and electrochemical methods were adopted to characterize the porous Au films. The resulted porous Au films show excellent catalytic activity toward the electrooxidation of glucose. A nonenzymatic glucose sensor based on those Au film electrodes shows a linear range from 2 to 10 mM with a sensitivity of 11.8 μA cm−2 mM−1, and a detection limit of 5 μM.  相似文献   

15.
16.
Efficient, new combination of a bioelectrocatalytic and a pseudocapacitive cellulose-based composite material is reported. The anode comprising Gluconobacter sp. fructose dehydrogenase physically adsorbed on Cladophora sp. Algae nanocellulose/polypyrrole composite provides large catalytic oxidation currents due to large effective surface area of the composite material, and enables storing of the charge. Supercapacitor properties are useful for larger current demands e.g. during switching on–off the devices. Mediatorless catalytic oxidation current densities as high as 14 mA cm 2 at potentials as negative as − 0.17 V vs. Ag/AgCl constitute the best anode performance without using mediators reported to date. The fuel cell with GCE cathode covered with laccase adsorbed on naphthylated multiwalled carbon nanotubes, exhibits improved parameters: open circuit voltage of 0.76 V, and maximum power density 1.6 mW cm 2.  相似文献   

17.
Borophene, a two-dimensional (2D) planar boron sheet, has attracted dramatic attention for its unique physical properties that are theoretically predicted to be different from those of bulk boron, such as polymorphism, superconductivity, Dirac fermions, mechanical flexibility and anisotropic metallicity. Nevertheless, it has long been difficult to obtain borophene experimentally due to its susceptibility to oxidation and the strong covalent bonds in bulk forms. With the development of growth technology in ultra-high vacuum (UHV), borophene has been successfully synthesized by molecular beam epitaxy (MBE) supported by substrates in recent years. Due to the intrinsic polymorphism of borophene, the choice of substrates in the synthesis of borophene is pivotal to the atomic structure of borophene. The different interactions and commensuration of borophene on various substrates can induce various allotropes of borophene with distinct atomic structures, which suggests a potential approach to explore and manipulate the structure of borophene and benefits the realization of novel physical and chemical properties in borophene due to the structure–property correspondence. In this review, we summarize the recent research progress in the synthesis of monolayer (ML) borophene on various substrates, including Ag(1 1 1), Ag(1 1 0), Ag(1 0 0), Cu(1 1 1), Cu(1 0 0), Au(1 1 1), Al(1 1 1) and Ir(1 1 1), in which the polymorphism of borophene is present. Moreover, we introduce the realization of bilayer (BL) borophene on Ag(1 1 1), Cu(1 1 1) and Ru(0 0 0 1) surfaces, which possess richer electronic properties, including better thermal stability and oxidation resistance. Then, the stabilization mechanism of polymorphic borophene on their substrates is discussed. In addition, experimental investigations on the unique physical properties of borophene are also introduced, including metallicity, topology, superconductivity, optical and mechanical properties. Finally, we present an outlook on the challenges and prospects for the synthesis and potential applications of borophene.  相似文献   

18.
A new sorbent based on cysteine modified silica gel (SiG-cys) was prepared and studied for preconcentration and separation of noble metals Au(III), Pd(II), Pt(II), Pt(IV). Its extraction efficiency was examined by batch and column solid phase extraction procedures. Laboratory experiments performed showed that sorbent is characterized with high selectivity, permiting quantitative sorption (93–97%) of noble metals Au, Pd and Pt from acidic media 0.1–2 mol L? 1 HCl and unsignificant sorption (less than 2%) for common base metals like Cu, Fe, Mn and Zn. The analytes retained on the sorbent are effectively eluted with 0.1 mol L? 1 thiourea in 0.1 mol L? 1 HCl and measured by ETAAS or ICP OES under optimal instrumental parameters. The sorbent showed high mechanical and chemical stability and extraction efficiency was not changed after 500 cycles of sorption/desorption. The sorbent was successfully applied in analyticals procedures for preconcentration and determination of Au, Pd and Pt in geological and soil samples. Detection limits (3σ criteria) achieved, depending on the instrumental methods used are: ETAAS (0.005 μg L? 1 for Au in river and sea water, 0.002 μg g? 1 for Au in copper ore and copper concentrate); ICP OES (0.03 μg L? 1 for Pd and 0.06 μg L? 1 for Pt in river and sea water, 0.006 μg g? 1 for Pd in copper ore and copper concentrate and 0.002 μg g? 1 for soluble Pt in soil). The accuracy of the procedures developed was confirmed by added/found method for sea and river water; by the analysis of national certified materials (copper ore and copper concentrate for Au and Pd) and by determination of the sum of soluble Pt(II) + Pt(IV) in spiked soil samples.  相似文献   

19.
We report an unusual and not previously reported adsorption state of CO on a Au(1 1 1) electrode and a hexagonally reconstructed Au(1 0 0) surface. Chemisorbed CO exhibits a reversible adsorption feature close to the onset of the oxidation of CO in solution. We suggest that the voltammetric feature is associated with the co-adsorption (and desorption) of OH- from the alkaline solution at low potential.  相似文献   

20.
The carbon fibrous mats with high conductivity (50 S cm−1) formed by carbon nanofibers with an average diameter of ∼150 nm have been fabricated by thermally treating the electrospun polyacrylonitrile fibers. The platinum clusters are electrodeposited on the carbon nanofibrous mats (CFMs) by multi-cycle CV method. In contrast to the catalytic peak current of methanol oxidation on commercial catalyst (185 mA mg−1 Pt), the catalytic peak current on optimum Pt/CFM electrode reaches to ∼420 mA mg−1 Pt despite of the large size (50–200 nm) of the Pt clusters, revealing that the special structure of carbon fibrous mats is favorable to improve the performance of catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号