首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The ac electrical parameters of thermally evaporated zinc phthalocyanine, ZnPc, semiconducting thin films was measured in the temperature range of 180–390 K and frequency between 0.1 and 20 kHz. Aluminum electrode contacts were utilized to sandwich the organic ZnPc semiconducting films. Capacitance and loss tangent decreased rapidly with frequency at high temperatures, but at lower temperatures a weak variation is observed. An equivalent circuit model assuming ohmic contacts could qualitatively and successfully explains capacitance and loss tangent behavior. The ac conductivity showed strong dependence on both temperature and frequency depending on the relevant temperature and frequency range under consideration. Ac conductivity σ (ω) is found to vary with ω, as ω s with the index s ≤ 1.35 suggesting a dominant hopping conduction process at low temperatures (< 250 K) and high frequency. The conductivity of some samples did not increase monotonically with temperature. This behavior was attributed to oxygen exhaustion of the sample as its temperature is increased. The ac conductivity behavior at low temperatures of ZnPc films could be described well by Elliott model assuming hopping of charge carriers between localized sites.  相似文献   

2.
We use experimental results of low signal impedance spectroscopy to investigate the conduction mechanism in organic semiconductor, zinc phthalocyanine (ZnPc). The first 10 nm, of a total of 150 nm thermally deposited ZnPc, was doped with molybdenum oxide (MoO3) by co-evaporation to obtain a 20% doping concentration. The ac electrical parameters were measured at room temperature in the dc bias and frequency ranges of 0–5 V and 100 Hz–0.1 MHz, respectively. The variation of bulk resistance with applied bias presents a clear indication of space charge limited conduction in the fabricated device. The experimental results show a strong frequency dependence of capacitance and loss tangent at low frequencies and high applied bias, while at higher frequencies and low applied bias a weak dependence is observed. Moreover, the ac conductivity shows a strong dependence on frequency and is found to vary as ωs with the index s≤1.15 suggesting a dominant hopping mechanism of conduction.  相似文献   

3.
An X-ray structural study of thermally evaporated metal-free phthalocyanine thin films with various film thicknesses was performed. All samples studied had polycrystalline structure and the unit cell was found to be of the α-form. Variation of the deposition rate from 0.5 to 1 nm s−1 had little effect on the structure. The films exhibit preferential orientation at low thickness; however, at higher thickness they become less orientated as additional peaks appear in the spectrum. The increase in the intensity of the first significant low angle peak with increasing thickness is attributed to the increased volume of the crystal probed during the X-ray exposure.The current density–voltage (JV) characteristics of α-H2Pc films sandwiched between two aluminum electrodes showed ohmic behavior at low voltages and space–charge-limited conduction (SCLC) at higher voltages. For comparison, similar measurements of the current density as a function of voltage were performed on zinc phthalocyanine, ZnPc, thin films using aluminum electrodes. The JV characteristics showed ohmic behavior at low voltages followed by SCLC dominated by an exponential trap distribution at higher voltages. Consequently, in both H2Pc and ZnPc films, aluminum electrodes act as if they are ohmic contacts. The implied provision of ohmic contacts using aluminum in this case is attributed to the formation of a thin Al2O3 layer during the deposition process.  相似文献   

4.
AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293–333 K) and frequency range (50–5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=s. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.  相似文献   

5.
Se75Te25−xGax (x=0, 5, 10 and 15 at wt%) chalcogenide compositions were prepared by the well known melt quenching technique. Thin films with different thicknesses in the range (185–630 nm) of the obtained compositions were deposited by thermal evaporation technique. X-ray diffraction patterns indicate that the amorphous nature of the obtained films. The ac conductivity and the dielectric properties of the studied films have been investigated in the frequency range (102–105 Hz) and in the temperature range (293–333 K). The ac conductivity was found to obey the power low ωs where s≤1 independent of film thickness. The temperature dependence of both ac conductivity and the exponent s can be well interpreted by the correlated barrier hopping (CBH) model. The experimental results of the dielectric constant ε1 and dielectric loss ε2 are frequency and temperature dependent. The maximum barrier height Wm calculated from the results of the dielectric loss according to the Guintini equation, and agrees with that proposed by the theory of hopping of charge carriers over a potential barrier as suggested by Elliott for chalcogenide glasses. The density of localized state was estimated for the studied film compositions. The variation of the studied properties with Ga content was also investigated. The correlation between the ac conduction and the dielectric properties were verified.  相似文献   

6.
The electrical transport properties and dielectric relaxation of Au/zinc phthalocyanine, ZnPC/Au devices have been investigated. The DC thermal activation energy at temperature region 400-500 K is 0.78 eV. The dominant conduction mechanisms in the device are ohmic conduction below 1 V and space charge limited conduction dominated by exponential trap distribution in potentials >1 V. Some parameters, such as concentration of thermally generated holes in valence band, the trap concentration per unit energy range at the valence band edge, the total concentration of traps and the temperature parameter characterizing the exponential trap distribution and their relation with temperatures have been determined. The AC electrical conductivity, σac, as a function of temperature and frequency has been investigated. It showed a frequency and temperature dependence of AC conductivity for films in the temperature range 300-400 K. The films conductivity in the temperature range 400-435 K increased with increasing temperature and it shows no response for frequency change. The dominant conduction mechanism is the correlated barrier hopping. The temperature and frequency dependence of real and imaginary dielectric constants and loss tangent were investigated.  相似文献   

7.
The ac electrical properties of metal-free phthalocyanine (H2PC) thin films have been studied in the frequency range from 102 to 2×104 Hz and in the temperature range from 150 to 475 K. The ac conductivity σ was found to vary as ωs with the index s≤1. Although these general values of s appear to be consistent with a hopping process, the present σ values do not increase monotonically with temperature. At low frequency, the capacitance and loss tangent were found to be constant over the entire frequency range, in good qualitative agreement with the equivalent circuit model consisting of an inherent capacitance in parallel with a resistive element. Moreover, at constant frequency, the two parameters increased with increasing temperature up to approximately 300 K. Above this temperature, another sharp decrease in both capacitance and loss tangent was obtained. This type of behavior was interpreted in terms of nomadic (delocalized) polarization, which leads to an increase in the dielectric constant. The drastic decrease of the capacitance and loss tangent observed above room temperature is thought to be related to the decrease in the dielectric constant, which results from the inability of the domains to hold the increases in free charge carrier concentration due to the increase of temperature. Received: 6 December 2001 / Accepted: 7 January 2002 / Published online: 19 July 2002 RID="*" ID="*"Corresponding author. Fax: +972-2/279-6960, E-mail: asaleh@science.alquds.edu  相似文献   

8.
The a.c. conductivity of chalcogenide glasses is well fitted at low temperature by the expression Σa.c.=sTn where s=1 and n≤0.5. This expression is consistent with correlated barrier hopping (CBH) of bipolarons between both random and paired defects. However, a study of the temperature and frequency dependence of the capacitance shows that in a-SiO2 and a-GeSe2 the capacitance obeys the scaling relation: C=A ln (?1). This result would suggest that the a.c. conduction mechanism in chalcogenide glasses may be better described by tunneling relaxation than by CBH.  相似文献   

9.
Electronic conduction in thermally evaporated thin films of organic semiconductor zinc phthalocyanine (ZnPc) has been investigated in a broad temperature range using gold Ohmic contacts. Electronic conduction by charge carrier hopping was dominated at low temperatures and for all applied voltages. At higher temperatures and at voltages just below 2 V conduction was found to obey Ohm's law, while at higher voltages space-charge-limited conduction (SCLC) was the dominated mechanism, which was controlled by hole-trapping states distributed exponentially within the band gap.In freshly prepared samples adsorbed oxygen was responsible for lower hole mobility and higher charge carrier concentrations. Prolonged heating of ZnPc films at 425 K resulted in lower defect state density, and thus reduced trap concentration and higher charge carrier mobility.  相似文献   

10.
An analysis of the frequency dependences of a barrier-limited conductivity model is presented. Theoretical results are in good accordance with previous experimental results. At low temperature the model predicts the same variation σ (ω) ∝ ωs with s < 1 as a hopping conduction process.  相似文献   

11.
A comparison of structure and dielectric properties of TlSbS2 thin films, deposited in different thicknesses (400–4100 Å) by thermal evaporation of TlSbS2 crystals that were grown by the Stockbarger–Bridgman technique and the bulk material properties of TlSbS2 are presented. Dielectric constant ε 1 and dielectric loss ε 2 have been calculated by measuring capacitance and dielectric loss factor in the frequency range 20 Hz–10 KHz and in the temperature range 273–433 K. It is observed that at 1 kHz frequency and 293 K temperature the dielectric constant of TlSbS2 thin films is ε 1=1.8–6 and the dielectric loss of TlSbS2 thin films is ε 2=0.5–3 depending on film thickness. In the given intervals, both of dielectric constant and dielectric loss decrease with frequency, but increase with temperature. The maximum barrier height W m is calculated from the dielectric measurements. The values of W m for TlSbS2 films and bulk are obtained as 0.56 eV and 0.62 eV at room temperature, respectively. The obtained values agree with those proposed by the theory of hopping over the potential barrier. The temperature variation of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model since it obeys the ω s law with a temperature dependent s (s<1) and going down as the temperature is increased. The temperature coefficient of capacitance (TCC) and permittivity (TCP) are evaluated for both thin films and bulk material of TlSbS2.  相似文献   

12.
Nanostructured bismuth sulfide thin films were prepared onto glass substrates with particle size of 21 nm by thermal evaporation using readily prepared bismuth sulfide nanocrystallite powder. The X-ray diffraction pattern revealed that bismuth sulfide thin films exhibit orthorhombic structure. The existence of quantum confinement effect was confirmed from the observed band gap energy of 1.86 eV. AC and DC electrical conductivity of Al/BiSnc/Al structures was investigated in the frequency range 0.5-100 kHz at different temperatures (303-463 K) under vacuum. The AC conductivity (σac) is found to be proportional to angular frequency (ωs). The obtained experimental result of the AC conductivity showed that the correlated barrier hopping model is the appropriate mechanism for the electron transport in the nanostructured bismuth sulfide thin films. DC conduction mechanism in these films was studied and possible conduction mechanism in the bismuth sulfide thin films was discussed.  相似文献   

13.
Dielectric properties, ac conductivity and thermal characteristics of terbium fumarate heptahydrate crystals grown by gel diffusion method have been carried out. The real part of dielectric constant, dielectric loss and ac conductivity of the material have been measured as a function of temperature and frequency of the applied electric field. Dielectric constant, dielectric loss and ac conductivity of the title compound were systematically investigated, showing a hump at about 85 °C, which could be attributed to water molecules in the crystal boundary. The dielectric anomaly exhibited by the material has been correlated with its thermal behaviour. The ac conductivity of the material obeys the Jonscher's power law relation; σ(ω) = σo + Aωs, with the temperature dependent power exponent s < 1. The ac conductivity of the compound has been found to increase with the increase in frequency. The material is suggested to show protonic conduction. The non-isothermal kinetics was used to evaluate the activation energy for the dehydration step of thermal decomposition of terbium fumarate heptahydrate by using the Coats–Redfern integral method.  相似文献   

14.
The present paper reports the effect of Pb impurity (low ∼2 at% and high ∼10 at%) on the ac conductivity (σac) of a-Ge20Se80 glass. Frequency-dependent ac conductance and capacitance of the samples over a frequency range ∼100 Hz to 50 kHz have been taken in the temperature range ∼268 to 358 K. At frequency 2 kHz and temperature 298 K, the value of σac increases at low as well as at higher concentration of Pb. σac is proportional to ωs for undoped and doped samples. The value of frequency exponent (s) decreases as the temperature increases. The static permittivity (εs) increases at both Pb concentrations. These results have been explained on the basis of some structural changes at low and higher concentration of Pb impurity.  相似文献   

15.
AC conductivity and dielectric properties of tungsten trioxide (WO3) in a pellet form were studied in the frequency range from 42 Hz to 5 MHz with a variation of temperature in the range from 303 K to 463 K. AC conductivity, σac(ω) was found to be a function of ωs where ω is the angular frequency and s is the frequency exponent. The values of s were found to be less than unity and decrease with increasing temperature, which supports the correlated barrier hopping mechanism (CBH) as the dominant mechanism for the conduction in WO3. The dielectric constant (ε′) and dielectric loss (ε″) were measured. The Cole–Cole diagram determined complex impedance for different temperatures.  相似文献   

16.
The ac conductivity (σac) and dielectric permittivity (?) are determined in the temperature range 300?K?T3 compound. The results indicated that the compound behaves as an improper ferroelectric and undergoes a ferroelectric phase transition from a high temperature rhombohedral phase I to a low temperature monoclinic phase II at T c?=?(486?±?1)?K. A second structural phase transition was observed around 345?K. The conductivity varies with temperature range and for T?>?428?K intrinsic conduction prevails. Different activation energies in the different temperature regions were calculated. The frequency dependence of σ(ω) was found to follow the universal dynamic response [σ(ω)∝(ω) s(T)]. The thermal behaviour of the frequency exponent s(T) suggests the hopping over the barrier model rather than the quantum mechanical tunneling model for the conduction mechanism.  相似文献   

17.
We report on the ac dielectric permittivity (ε) and the electric conductivity (σω), as function of the temperature 300?K?T4IO3. The main feature of our measured parameters is that, the compound undergoes a ferroelectric phase transition of an improper character, at (368?±?1)K from a high temperature paraelectric phase I (Pm21 b) to a low temperature ferroelectric phase II (Pc21n). The electric conduction seems to be protonic. The frequency dependent conductivity has a linear response following the universal power law (σ( ω )?=?A(T s (T)). The temperature dependence of the frequency exponent s suggests the existence of two types of conduction mechanisms.  相似文献   

18.
We report on the structural, optical and dielectric characterization of solid state derived, pseudo-cubic nanoscale barium titanates (BTs) with gadolinium (Gd3+) as substitutional dopant. Referring to X-ray diffractograms, apart from the BT peaks related to perovskite structure, the non-existence of any additional peaks due to byproducts has revealed that Gd3+ has undergone substitutional doping into the BT host lattice. The well-separated BT nanoparticles of typical size ~10–15 nm were observed through electron microscopy studies. Following a direct, allowed type carrier transition (n=1/2), a reduction in the optical band gap value (from 3.28 to 3.255 eV) was observed when the Gd-doping level was varied within 0–7 %. Conversely, the Urbach energy followed an increasing trend, from a value of 0.741 to 1.879 eV. Furthermore, the dielectric constant showed a decreasing tendency with doping content and with increasing frequency. However, in the low-frequency region, the loss tangent (tanδ), which is the combined result of orientational polarization and electrical conduction, was found to be quite high in the doped samples as compared to their un-doped counterpart. The frequency-dependent electrical data were also analyzed in the framework of conductivity and impedance formalisms. In particular, the ac conductivity which varies as ~ω s approaches ideal Debye behavior (s→1) for a low Gd level and a higher doping concentration did not show improved dielectric feature of the host. The incorporation of rare-earth (Gd3+) ions into the BT host system could greatly manifest dielectric relaxation and carrier conduction mechanisms, in a given frequency range, and thus can find immense scope in miniaturized nanoelectronic elements including ceramic capacitors and transducers.  相似文献   

19.
The dependencies of complex dielectric functions (the dielectric constant, ε 1, and the dielectric loss, ε 2), on frequency and temperature of zinc phthalocyanine (ZnPc) thin films sandwiched between either gold or aluminum Ohmic-electrode contacts have been investigated in the temperature range of 93–470 K and frequency range 0.1–20 kHz. It is found that both values of ε 1 and ε 2 decrease with increasing frequency and increase with decreasing temperature. The rate of change depends greatly on the temperature and frequency ranges under consideration. Around room temperature, neither ε 1 nor ε 2 show any appreciable change through the whole range of frequencies. Thus, the dielectric dispersion is found to include of both dipolar and interfacial polarizations. The dependencies of both dielectric functions on frequency at different temperatures were found to follow a universal power law of the form ω n , where the index 0<n≤?1. This indicates that the correlated barrier hopping (CBH) model is a suitable mechanism to describe the dielectric behavior in ZnPc films. Furthermore, the results of the dielectric response indicate that polarization in these films could be in the form of non-Debye polarization. However, the Debye polarization can be traced below room temperature. The obtained results of the relaxation-time, τ, dependency on temperature have shown that a thermally-activated process may be dominated in ZnPc thin films conduction at high temperatures. Partial phase transition (from α- to β-phase) has been observed around 400 K in molecular relaxation-time, τ, and optical dielectric constant, ε . Arrhenius behavior has been observed for all the dielectric loss and conductivity relaxation-times above room temperature and their activation energies are explained and reported. The optical dielectric constant ε was found to increase with temperature.  相似文献   

20.
The complex conductivity of La2CuO4+δ has been investigated for frequencies 20 Hz≤ν≤4 GHz and temperatures 1.5K≤T≤450 K. Two single crystals with δ≈0 and δ≈0.02 were investigated, using dc (four-probe), reflectometric and contact-free techniques. At high temperatures the dc conductivity is thermally activated with low values of the activation energy. For low temperatures Mott's variable range hopping dominates. The real and imaginary parts of the ac conductivity follow a power-law dependence σ~v s, typical for charge transport by hopping processes. A careful analysis of the temperature dependence of the ac conductivity and of the frequency exponents has been performed. It is not possible to explain all aspects of the ac conductivity in La2CuO4+δ by standart hopping models. However, the observed minimum in the temperature dependence of the frequency exponents strongly suggests tunneling of large polarons as dominant transport process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号