首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
光子晶体光纤接续损耗的理论分析   总被引:5,自引:0,他引:5  
基于超格子构造法,采用全矢量模型计算了光子晶体光纤的模场半径,由此出发理论分析了光子晶体光纤与普通单模光纤之间接续损耗分别受横向偏移、轴向倾斜以及模场不匹配的影响,给出了光子晶体光纤在部分常用结构参量区域{Λ,d/Λ}内与SMF-28接续损耗的理论值,讨论了光子晶体光纤各结构参量与接续损耗之间的关系。并简要分析了不同结构光子晶体光纤之间的接续损耗。结果表明,接续损耗对横向偏移和轴向倾斜都非常敏感;孔距是决定接续损耗大小最主要的因素;与普通单模光纤接续,当光子晶体光纤的孔距比该单模光纤纤芯半径大一些时,接续损耗比较小;两种不同结构光子晶体光纤之间的接续损耗大小最主要取决于它们孔距的差异。  相似文献   

2.
光子晶体光纤模场直径增加方法   总被引:2,自引:1,他引:1       下载免费PDF全文
通过加热光子晶体光纤,其包层中空气孔由于表面张力的作用而塌缩减小。理论和实验结果表明,空气孔的塌缩在满足波导的渐变条件下,引入的能量损耗非常小。空气孔的塌缩减小,可以有效地增加光子晶体光纤的模场直径,从而不仅可以提高光耦合的效率和光纤端面的损伤阈值,而且可以降低与其它模场直径不匹配的普通光纤的熔接损耗。  相似文献   

3.
光子晶体光纤弯曲损耗特性研究   总被引:2,自引:3,他引:2  
郭夏锐  杨德兴  赵建林  杨青  杜旭荣 《光子学报》2007,36(10):1817-1820
对光子晶体光纤的损耗特性进行了分析,并在实验上对两种典型的光子带隙型和全内反射型光子晶体光纤进行了研究.分别对两种不同结构的光子晶体光纤在弯曲半径2~15 mm范围内的损耗进行了测量.与传统光纤损耗实验结果的对比表明,两种光子晶体光纤的弯曲损耗均不明显,具有很强的抗弯曲损耗能力.实验也证实了光子晶体光纤弯曲损耗存在临界弯曲半径,在大于临界半径的情况下,几乎没有弯曲损耗.从结构上分析并证明光子晶体光纤弯曲损耗随填充比(d/Λ)的增加而减小,填充比越高弯曲损耗越小.  相似文献   

4.
Photonic crystal fibers are attractive since we can realize a wide variety of unique features in the PCFs, which cannot be realized in conventional single-mode fibers. We describe recent progress in the PCF.  相似文献   

5.
Xiao L  Jin W  Demokan MS 《Optics letters》2007,32(2):115-117
We demonstrate a novel method for low-loss splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) by repeated arc discharges using a conventional fusion splicer. An optimum mode field match at the interface of PCF-SMF and an adiabatic mode field variation in the longitudinal direction of the small-core PCF can be achieved by repeated arc discharges applied over the splicing joint to gradually collapse the air holes of the small-core PCF. This method is simple and offers a practical solution for light coupling between small-core PCFs and SMFs.  相似文献   

6.
H. Ademgil  S. Haxha 《Optik》2011,122(21):1950-1956
A novel kind of large mode area photonic crystal fibers (PCFs) are proposed in this paper. In order to achieve large effective mode area, a novel technique is applied to seven missing air hole PCF structures. The modal characteristics of PCF structures such as effective mode area, confinement loss, chromatic dispersion properties with doped cores, are investigated by employing the full vectorial finite element method (FEM). Simulation results demonstrate that effective mode area and confinement losses of fundamental mode simultaneously improved by applying our novel technique to proposed structures. The effects of bending on confinement losses of the proposed PCFs have been thoroughly investigated. Additionally, confinement losses of first higher order modes are presented and the possibility of stripping them in a simple way is discussed.  相似文献   

7.
Splice-free interfacing of photonic crystal fibers   总被引:2,自引:0,他引:2  
We report a new method for making low-loss interfaces between conventional single-mode fibers and photonic crystal fibers (PCFs). Adapted from the fabrication of PCF preforms from stacked tubes and rods, this method avoids the need for splicing and is versatile enough to interface to virtually any type of index-guiding silica PCF. We illustrate the method by forming interfaces to two problematic types of PCF, highly nonlinear and multicore. In particular, we believe this to be the first method capable of individually coupling light into and out of all the cores of a fiber with multiple closely spaced cores, without input or output cross talk.  相似文献   

8.
光子晶体光纤的弯曲损耗振荡特性分析   总被引:2,自引:1,他引:1  
崔莉  赵建林  张晓娟  杨德兴 《光学学报》2008,28(6):1172-1177
综合运用弯曲光纤的等效直光纤模型、全矢量频域有限差分法及各向异性完全匹配层吸收边界,计算了两种类型(折射率引导型和带隙型)光子晶体光纤(PCF)的弯曲损耗.通过数值模拟弯曲损耗随弯曲半径的变化关系,证实了两种光子晶体光纤均具有弯曲损耗振荡特性.进而分析了两种光子晶体光纤弯曲损耗振荡的产生机理并给出了与损耗峰对应的包层模式.结果表明,振荡的产生源于基模与包层模式的耦合,其中,折射率引导型光子晶体光纤的弯曲损耗振荡机理类似于传统双包层光纤,带隙型光子晶体光纤弯曲损耗振荡的产生则是两种不同类型的包层模式共同作用的结果.  相似文献   

9.
Structural long-period gratings in photonic crystal fibers   总被引:7,自引:0,他引:7  
We report what is believed to be the first example of structural long-period gratings written in pure silica photonic crystal fibers (PCFs). The gratings are realized by periodic collapse of the holes of the PCF by heat treatment with a CO(2) laser. The resulting periodic hole-size perturbation produces core-to-cladding-mode conversion. These results can lead to a new family of structural all-fiber devices that use the unique properties of PCFs.  相似文献   

10.
An analysis of splice loss between photonic crystal fibers (PCFs) and conventional single-mode fibers (SMFs) is presented at bending and straight conditions, by using scalar effective index method (SEIM), vectorial effective index method (VEIM), and finite-difference frequency domain (FDFD) methods. It is shown that when there is a slight bending at the vicinity of splice joint, the spot size increases sharply at higher frequencies. On the basis of the obtained results, a mechanism to optimize the splice loss between PCFs and conventional SMFs, both with any geometry, is suggested. The results can be utilized for PCF- based devices to be jointed to SMF as a transmission medium.  相似文献   

11.
一种阶梯结构的色散平坦光子晶体光纤的研究   总被引:4,自引:1,他引:3  
以多极法理论为基础,提出了一种阶梯结构的光子晶体光纤.通过改变其内四层的三个结构参量(内两层孔孔径,外两层孔孔径和孔间距),实现色散绝对值在1.1~1.8μm的波段内变化仅为0.05~2 ps/(km·nm)的平坦甚至超平坦的特性.在此情况下对其有效模场面积进行数值模拟,充分展示了达到色散平坦和超平坦时,相对于传统光子晶体光纤,此种结构的光纤对芯区内光场的局域能力有很大程度的增强,其有效模场面积可仅为传统光子晶体光纤的1/30.最后,经过大量的数值计算和理论分析,归纳出若要此种阶梯结构的光纤在1.1~1.8μm的波段内达到色散平坦甚至超平坦特性的设计依据.  相似文献   

12.
In this paper the effect of photonic crystal fiber’s structure parameters on Rayleigh scattering was investigated. Rayleigh scattering loss (RSL) has been numerically estimated by average Rayleigh scattering coefficient based on the empirical relations for \(V\) and \(W\) parameters of double-clad photonic crystal fibers (DC PCFs). The dependence of RSL on the two structural parameters—the air hole diameter and the hole pitch was demonstrated. We have shown that RSL depends on the index profiles because of the different optical power confinement factors in every layer of DC PCF. Using these results, the RSL can be optimized by adjusting the fiber parameters—air-hole diameter as well as the air-hole pitch.  相似文献   

13.
We present an analytical procedure to compute the first derivatives of the propagation constants with respect to several structural parameters in photonic crystal fibers (PCFs). From them we can easily evaluate the same derivatives of other directly related magnitudes. The above derivatives provide the trend of the magnitude at issue, which allows us to take advantage of a gradient-based algorithm to shape the properties of the guiding structure. In this way we implement an optimization process to carry out real inverse design in PCFs. We focus our attention on designing PCFs with a specific chromatic dispersion behavior. Likewise, the same approach makes it possible to analyze their fabrication tolerances.  相似文献   

14.
We present the dispersion and Raman amplification characteristics of As2Se3 photonic crystal fibers (PCFs). We compare the gain characteristics with conventional As2Se3 fibers and find that the Raman gain efficiency in PCFs can be improved by a factor of more than 4. This allows us to either use a small length of the fiber or to use the low pump power to attain similar gain characteristics. Numerical simulations reveal that a peak gain of 10 dB can be achieved in a 1.1 m long PCF when it is pumped at 1.5 microm in wavelength with an input power of 500 mW.  相似文献   

15.
Ju J  Xuan HF  Jin W  Liu S  Ho HL 《Optics letters》2010,35(23):3886-3888
We introduce a femtosecond-laser-based technique for selective opening of airholes in photonic crystal fibers (PCFs). With this technique, selective filling and inflation of the airholes in the PCF cladding are demonstrated. The technique may find important applications in tailoring or altering PCF characteristics and make it possible to seamlessly integrate various components/functions into PCFs.  相似文献   

16.
Lim JH  Lee KS  Kim JC  Lee BH 《Optics letters》2004,29(4):331-333
The mode-coupling properties of tunable long-period fiber gratings (LPGs) formed in photonic crystal fibers (PCFs) are presented. The mode coupling from the fundamental core mode to a cladding mode of a PCF is obtained by use of periodic mechanical pressure. The strength and the wavelength of the resonant peak are tuned by adjusting the grating period and the pressure applied on the PCF. Contrary to the conventional fiber case, the resonant wavelength of the PCF LPG is decreased by increasing the periodicity.  相似文献   

17.
Tunable photonic crystal fiber coupler based on a side-polishing technique   总被引:1,自引:0,他引:1  
Kim H  Kim J  Paek UC  Lee BH  Kim KT 《Optics letters》2004,29(11):1194-1196
A tunable photonic crystal fiber (PCF) coupler, which couples part of the optical power in one PCF with that in another PCF, has been made by side polishing. We fabricated the PCF coupler by mating two side-polished PCFs. We achieved evanescent field coupling between the core modes of the two PCFs by using side polishing to bring the cores close to each other. By adjusting the mating angle between the two side-polished PCFs we obtained as much as 90% tunability in the coupling ratio. The spectrum of the coupling ratio was almost flat, with small ripples, over a 400-nm wavelength range.  相似文献   

18.
Xiao L  Birks TA  Loh WH 《Optics letters》2011,36(23):4662-4664
We propose and demonstrate hydrophobic photonic crystal fibers (PCFs). A chemical surface treatment for making PCFs hydrophobic is introduced. This repels water from the holes of PCFs, so that their optical properties remain unchanged even when they are immersed in water. The combination of a hollow core and a water-repellent inner surface of the hydrophobic PCF provides an ultracompact dissolved-gas sensor element, which is demonstrated for the sensing of dissolved ammonia gas.  相似文献   

19.
The most common methods applied in the analysis of photonic crystal fibers (PCFs) are finite difference time/frequency domain (FDTD/FDFD) method and finite element method (FEM). These methods are very general and reliable (well tested). They describe arbitrary structure but are numerically intensive and require detailed treatment of boundaries and complex definition of calculation mesh. So these conventional models that simulate the photonic response of PCFs are computationally expensive and time consuming. Therefore, a practical design process with trial and error cannot be done in a reasonable amount of time. In this article, an artificial intelligence method such as Neuro–Fuzzy system is used to establish a model that can predict the properties of PCFs. Simulation results show that this model is remarkably effective in predicting the properties of PCF such as dispersion, dispersion slope and loss over the C communication band.  相似文献   

20.
Xiao L  Jin W  Demokan MS  Ho HL  Tam HY  Ju J  Yu J 《Optics letters》2006,31(12):1791-1793
A novel method for light coupling between single-mode fibers (SMFs) and small-core photonic crystal fibers (PCFs) is demonstrated. The method is based on growing photopolymer microtips directly on the end faces of SMFs. The shape and size of the tips can be controlled by adjusting the laser power and the exposure time for polymerization to match the mode field to the small-core PCFs. A 5 dB improvement in coupling efficiency between a SMF and a commercial small-core, highly nonlinear PCF is experimentally demonstrated. This compact and efficient butt-coupling method is particularly suitable for PCF gas sensor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号