首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
The Oshima? Nozaki (Et2AlI) condensation of isolevoglucosenone ( 4 ) with 2,6‐anhydro‐3,4,5,7‐tetra‐O‐benzyl‐D ‐glycero‐D ‐gulo‐heptose ( 5 ) gave an enone 6 that was converted with high stereoselectivity to 3‐C‐[(1R)‐2,6‐anhydro‐D ‐glycero‐D ‐gulo‐heptitol‐1‐C‐yl]‐2,3‐dideoxy‐D ‐arabino‐hexose ( 1 ; 1 : 1 mixture of α‐ and β‐D ‐pyranose), and to 3‐C‐[(1R)‐2,6‐anhydro‐D ‐glycero‐D ‐gulo‐heptitol‐1‐C‐yl]‐2,3‐dideoxy‐D ‐lyxo‐hexose ( 2 ; 2.7 : 1.4 : 1.0 : 1.4 mixture of α‐D ‐furanose, β‐D ‐furanose, α‐D ‐pyranose, and β‐D ‐pyranose). The Oshima? Nozaki (Et2AlI) condensation of levoglucosenone ( 17 ) with aldehyde 5 gave an enone 18 that was converted with high stereoselectivity to 3‐C‐[(1R)‐2,6‐anhydro‐D ‐glycero‐D ‐gulo‐heptitol‐1‐C‐yl]‐3,4‐dideoxy‐α‐D ‐arabino‐hexopyranose ( 3 ; single anomer).  相似文献   

2.
9‐(3‐Deoxy‐β‐D ‐erythro‐pentofuranosyl)‐2,6‐diaminopurine ( 6 ) was synthesized by an enzymatic transglycosylation of 2,6‐diaminopurine ( 2 ) with 3′‐deoxycytidine ( 1 ) as a donor of 3‐deoxy‐D ‐erythro‐pentofuranose moiety. This transformation comprises i) deamination of 1 to 3′‐deoxyuridine ( 3 ) under the action of whole cell (E. coli BM‐11) cytidine deaminase (CDase), ii) the phosphorolytic cleavage of 3 by uridine phosphorylase (UPase) giving rise to the formation of uracil ( 4 ) and 3‐deoxy‐α‐D ‐erythro‐pentofuranose‐1‐O‐phosphate ( 5 ), and iii) coupling of the latter with 2 catalyzed by whole cell (E. coli BMT‐4D/1A) purine nucleoside phosphorylase (PNPase). Deamination of 6 by adenosine deaminase (ADase) gave 3′‐deoxyguanosine ( 7 ). Treatment of 6 with NaNO2 afforded 9‐(3‐deoxy‐β‐D ‐erythro‐pentofuranosyl)‐2‐amino‐6‐oxopurine (3′‐deoxyisoguanosine; 8 ). Schiemann reaction of 6 (HF/HBF4+NaNO2) gave 9‐(3‐deoxy‐β‐D ‐erythro‐pentofuranosyl)‐2‐fluoroadenine ( 9 ).  相似文献   

3.
Treatment of 3‐methylamino‐5‐phenylthiophene with α,β‐unsaturated esters, i.e., methyl acrylate, (E)‐methyl crotonate, diethyl fumarate, diethyl maleate and ethyl propiolate, in tetrahydrofuran for several days at reflux gave 1‐methyl‐3,4‐dihydrothieno[2,3‐e]pyridin‐2‐ones 4 and/or 1‐methylthieno[2,3‐e]pyridin‐2‐ones 5 , depending on the structure of the esters. On the other hand, the same reactions with α,β‐unsaturated nitriles such as acrylonitrile and tetracyanoethene, gave the corresponding thiophenes 7 and 10 bearing 2‐cyanoethyl and 1,2,2‐tricyanoethenyl groups at C‐2, respectively. The reaction with (Z)‐1,2‐dicyanoethene under the same conditions produced the corresponding thiophene 9 bearing the 1,2‐dicyanoethenyl group and 1,2‐dicyano‐5‐methylaminobiphenyl.  相似文献   

4.
The D ‐gluco‐isoquinuclidines 3 and 4 were prepared and tested as inhibitors of the β‐glucosidases from Caldocellum saccharolyticum and from sweet almonds; the results are compared to the inhibition of snail β‐mannosidase by the D ‐manno‐isoquinuclidines 1 and 2 . Exploratory experiments in the racemic series showed that treatment of the ester epoxide 6 with benzyl alcoholates leads only to epimerisation, transesterification, and formation of the cyclopropane 9 . Ring opening of the reduced epoxide 13 by NaN3 proceeded regioselectively to provide 14 . Treatment of the C(6)? O‐triflate 16 with AcOCs induced a rearrangement; the reaction with NaN3 gave the C(5)‐azido derivative 14 . The acetoxy triflate 18 , however, reacted with AcOCs to provide the desired gluco‐isoquinuclidine 19 . Similarly, the enantiomerically pure acetoxy triflate 22 provided the D ‐gluco‐isoquinuclidine 24 , which was reduced and deprotected to provide 3 and 4 . The deoxy analogues 30 and 31 were obtained by reductive deiodination of the iodide 27 , derived from 22 . The D ‐gluco‐isoquinuclidines 3, 4, 30 , and 31 are much weaker inhibitors of β‐glucosidases than the D ‐manno‐analogues 1 and 2 of snail β‐mannosidase. The N‐benzyl derivative 3 is a weaker inhibitor than the N‐unsubstituted analogue in the gluco‐series, while it is a much stronger inhibitor in the manno‐series. A consideration of the pKHA values of the isoquinuclidines 1 – 4 and the pH value of the enzyme assays suggests that the D ‐gluco‐isoquinuclidines are poor mimics of the shape of a reactive, enzyme‐bound gluco‐conformer, while the D ‐manno‐analogues are reasonably good mimics of a reactive, enzyme‐bound manno‐conformer. The inhibition results may also suggest that the glycosidase induced lengthening of the scissile bond and rehybridisation of the anomeric centre are more strongly correlated with the change of the ground‐state conformation during hydrolysis of β‐D ‐glucopyranosides than of β‐D ‐mannopyranosides.  相似文献   

5.
吴自成宁君  孔繁祚 《中国化学》2003,21(12):1655-1660
Lauryl glycoside of β-D-Glcp-(1→3)-[β-D-Glcp-(1→6)-]α-D-Glcp-(1→3)-β-D-Glcp-(1→3)-[β-D-Glcp-(1→6)-]α-D-Glcp-(1→3)-β-D-Glcp-(1→3)-[β-D-Glcp-(1→6)-]β-D-Glcp was synthesized through 3 3 3 strategy. 3-O-Allyl-2,4,6-tri-O-benzoyl-β-D-glucopyranosyl-(1→3)- -[2, 3, 4, 6-tetra-O-benzoyl-β-D-glucopyranosyl-(1→6)-] 1,2-O-isopropylidene-α-D-glucofuranose was used as the key intermediate which was converted to the corresponding trisaccharide donor and acceptor readily.  相似文献   

6.
The design and synthesis of β‐peptides from new C‐linked carbo‐β‐amino acids (β‐Caa) presented here, provides an opportunity to understand the impact of carbohydrate side chains on the formation and stability of helical structures. The β‐amino acids, Boc‐(S)‐β‐Caa(g)‐OMe 1 and Boc‐(R)‐β‐Caa(g)‐OMe 2 , having a D ‐galactopyranoside side chain were prepared from D ‐galactose. Similarly, the homo C‐linked carbo‐β‐amino acids (β‐hCaa); Boc‐(S)‐β‐hCaa(x)‐OMe 3 and Boc‐(R)‐β‐hCaa(x)‐OMe 4 , were prepared from D ‐glucose. The peptides derived from the above monomers were investigated by NMR, CD, and MD studies. The β‐peptides, especially the shorter ones obtained from the epimeric (at the amine stereocenter Cβ) 1 and 2 by the concept of alternating chirality, showed a much smaller propensity to form 10/12‐helices. This substantial destabilization of the helix could be attributed to the bulkier D ‐galactopyranoside side chain. Our efforts to prepare peptides with alternating 3 and 4 were unsuccessful. However, the β‐peptides derived from alternating geometrically heterochiral (at Cβ) 4 and Boc‐(R)‐β‐Caa(x)‐OMe 5 (D ‐xylose side chain) display robust right‐handed 10/12‐helices, while the mixed peptides with alternating 4 and Boc‐β‐hGly‐OMe 6 (β‐homoglycine), resulted in left‐handed β‐helices. These observations show a distinct influence of the side chains on helix formation as well as their stability.  相似文献   

7.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Enantioseparation of α,α‐diphenyl‐2‐pyrrolidinemethanol (D2PM) and methylphenidate (MPH; Ritalin®) using (R)‐(?)‐4‐(N,N‐dimethylaminosulfonyl)‐7‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐2,1,3‐benzoxadiazole as the chiral derivatization reagent has been achieved for the first time, and a simple, reliable detection method using HPLC with fluorescence detection has been developed. D2PM and MPH have been derivatized with (R)‐(?)‐4‐(N,N‐dimethylaminosulfonyl)‐7‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐2,1,3‐benzoxadiazole at 55°C for 15 min. The derivatives of D2PM and MPH have been separated, completely and rapidly, using a reversed‐phase system within 16 min (resolution factor (Rs)=1.60 and 2.53, respectively). The detection limits of (R)‐ and (S)‐D2PM were found to be 6.8 and 13 ng/mL, respectively, and those of D ‐ and L ‐threo‐MPH were 61 and 66 ng/mL, respectively (S/N=3). The proposed method was successfully applied to the analysis of rat plasma, where the rats were separately dosed with D2PM and MPH (Ritalin).  相似文献   

9.
Methyl β‐D‐mannopyranosyl‐(1→4)‐β‐D‐xylopyranoside, C12H22O10, (I), crystallizes as colorless needles from water, with two crystallographically independent molecules, (IA) and (IB), comprising the asymmetric unit. The internal glycosidic linkage conformation in molecule (IA) is characterized by a ϕ′ torsion angle (O5′Man—C1′Man—O1′Man—C4Xyl; Man is mannose and Xyl is xylose) of −88.38 (17)° and a ψ′ torsion angle (C1′Man—O1′Man—C4Xyl—C5Xyl) of −149.22 (15)°, whereas the corresponding torsion angles in molecule (IB) are −89.82 (17) and −159.98 (14)°, respectively. Ring atom numbering conforms to the convention in which C1 denotes the anomeric C atom, and C5 and C6 denote the hydroxymethyl (–CH2OH) C atom in the β‐Xylp and β‐Manp residues, respectively. By comparison, the internal glycosidic linkage in the major disorder component of the structurally related disaccharide, methyl β‐D‐galactopyranosyl‐(1→4)‐β‐D‐xylopyranoside), (II) [Zhang, Oliver & Serriani (2012). Acta Cryst. C 68 , o7–o11], is characterized by ϕ′ = −85.7 (6)° and ψ′ = −141.6 (8)°. Inter‐residue hydrogen bonding is observed between atoms O3Xyl and O5′Man in both (IA) and (IB) [O3Xyl...O5′Man internuclear distances = 2.7268 (16) and 2.6920 (17) Å, respectively], analogous to the inter‐residue hydrogen bond detected between atoms O3Xyl and O5′Gal in (II). Exocyclic hydroxymethyl group conformation in the β‐Manp residue of (IA) is gauche–gauche, whereas that in the β‐Manp residue of (IB) is gauche–trans.  相似文献   

10.
Four structures of oxoindolyl α‐hydroxy‐β‐amino acid derivatives, namely, methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐methoxy‐2‐phenylacetate, C24H28N2O6, (I), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐ethoxy‐2‐phenylacetate, C25H30N2O6, (II), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐[(4‐methoxybenzyl)oxy]‐2‐phenylacetate, C31H34N2O7, (III), and methyl 2‐[(anthracen‐9‐yl)methoxy]‐2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐phenylacetate, C38H36N2O6, (IV), have been determined. The diastereoselectivity of the chemical reaction involving α‐diazoesters and isatin imines in the presence of benzyl alcohol is confirmed through the relative configuration of the two stereogenic centres. In esters (I) and (III), the amide group adopts an anti conformation, whereas the conformation is syn in esters (II) and (IV). Nevertheless, the amide group forms intramolecular N—H...O hydrogen bonds with the ester and ether O atoms in all four structures. The ether‐linked substituents are in the extended conformation in all four structures. Ester (II) is dominated by intermolecular N—H...O hydrogen‐bond interactions. In contrast, the remaining three structures are sustained by C—H...O hydrogen‐bond interactions.  相似文献   

11.
The Ser, Cys, and His side chains play decisive roles in the syntheses, structures, and functions of proteins and enzymes. For our structural and biomedical investigations of β‐peptides consisting of amino acids with proteinogenic side chains, we needed to have reliable preparative access to the title compounds. The two β3‐homoamino acid derivatives were obtained by Arndt–Eistert methodology from Boc‐His(Ts)‐OH and Fmoc‐Cys(PMB)‐OH (Schemes 2–4), with the side‐chain functional groups' reactivities requiring special precautions. The β2‐homoamino acids were prepared with the help of the chiral oxazolidinone auxiliary DIOZ by diastereoselective aldol additions of suitable Ti‐enolates to formaldehyde (generated in situ from trioxane) and subsequent functional‐group manipulations. These include OH→OtBu etherification (for β2hSer; Schemes 5 and 6), OH→STrt replacement (for β2hCys; Scheme 7), and CH2OH→CH2N3→CH2NH2 transformations (for β2hHis; Schemes 9–11). Including protection/deprotection/re‐protection reactions, it takes up to ten steps to obtain the enantiomerically pure target compounds from commercial precursors. Unsuccessful approaches, pitfalls, and optimization procedures are also discussed. The final products and the intermediate compounds are fully characterized by retention times (tR), melting points, optical rotations, HPLC on chiral columns, IR, 1H‐ and 13C‐NMR spectroscopy, mass spectrometry, elemental analyses, and (in some cases) by X‐ray crystal‐structure analysis.  相似文献   

12.
Parallel and practical methods for the preparation of both (E)‐ and (Z)‐β‐aryl1‐β‐aryl2‐α,β‐unsaturated esters 1 and (E)‐ and (Z)‐α‐aryl1‐β‐aryl2‐α,β‐unsaturated esters 2 are described. These methods involve accessible, robust, stereocomplementary N‐methylimidazole (NMI)‐mediated enol tosylations (14 examples, 70–99 % yield), as well as stereoretentive Suzuki–Miyaura cross‐couplings (36 examples, 64–99 % yield). The highlighted feature of the present protocol is the use of parallel and stereocomplementary approaches to obtain highly (E)‐ and (Z)‐pure products 1 and 2 by utilizing sequential enol tosylations and cross‐coupling reactions. An expeditious and parallel synthesis of (E)‐ and (Z)‐zimelidine ( 3 ), which is a highly representative selective serotonin reuptake inhibitor (SSRI), was performed by utilizing the present methods.  相似文献   

13.
The 1,3,4,6‐tetra‐O‐acetyl‐2‐azido‐2‐deoxy‐β‐D ‐mannopyranose ( 4 ) or the mixture of 1,3,6‐tri‐O‐acetyl‐2‐azido‐2‐deoxy‐4‐O‐(2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐galactopyranosyl)‐β‐D ‐mannopyranose ( 10 ) and the corresponding α‐D ‐glucopyranose‐type glycosyl donor 9 / 10 reacted at room temperature with protected nucleosides 12 – 15 in CH2Cl2 solution in the presence of BF3?OEt2 as promoter to give 5′‐O‐(2‐azido‐2‐deoxy‐α‐D ‐glycosyl)nucleosides in reasonable yields (Schemes 2 and 3). Only the 5′‐O‐(α‐D ‐mannopyranosyl)nucleosides were obtained. Compounds 21, 28, 30 , and 31 showed growth inhibition of HeLa cells and hepatoma Bel‐7402 cells at a concentration of 10 μM in vitro.  相似文献   

14.
Aldol reaction of 7‐chloro‐1,3‐dihydro‐1‐methyl‐5‐phenyl‐2H‐1,4‐benzodiazepin‐2‐one ( 1 ) with 4‐substituted α‐methylcinnamaldehydes 2 – 5 afforded a mixture of threo‐ and erythro‐3‐(3‐aryl‐1‐hydroxy‐2‐methylprop‐2‐enyl)‐7‐chloro‐1,3‐dihydro‐1‐methyl‐5‐phenyl‐2H‐1,4‐benzodiazepin‐2‐ones 6 – 13 . The chromatographically separated threo diastereoisomers 6, 8, 10 , and 12 and erythro diastereoisomers 7, 9, 11 , and 13 were submitted to ‘directed' homogeneous hydrogenation catalyzed by [RhI(cod)(diphos‐4)]ClO4 (cod=cycloocta‐1,5‐diene, diphos‐4=butane‐1,4‐diylbis[diphenylphosphine]. From the erythro‐racemates 9, 11 , and 13 , the erythro,erythro/erythro,threo‐diastereoisomer mixtures 16 / 17, 20 / 21 , and 24 / 25 were obtained in ratios of 20 : 80 to 28 : 72 (HPLC), which were separated by chromatography. From the threo racemates 8, 10 , and 12 , the threo,threo/threo,erythro‐diastereoisomer mixtures were obtained in a ratio of ca. 25 : 75 (1H‐NMR). The relative configurations were assigned by means of 1H‐NMR data and X‐ray crystal‐structure determination of 21 . Hydrolysis of 21 afforded the diastereoisomerically pure N‐(benzyloxy)carbonyl derivative 27 of α‐amino‐β‐hydroxy‐γ‐methylpentanoic acid 26 , representative of the novel group of polysubstituted α‐amino‐β‐hydroxycarboxylic acids.  相似文献   

15.
Oxidations of 5α‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 8 ) with Pb(OAc)4 under thermal or photolytic conditions or in the presence of iodine afforded only complex mixtures of compounds. However, the HgO/I2 version of the hypoiodite reaction gave as the primary products the stereoisomeric (Z)‐ and (E)‐1(10)‐unsaturated 5,10‐seco B‐nor‐derivatives 10 and 11 , and the stereoisomeric (5R,10R)‐ and (5S,10S)‐acetals 14 and 15 (Scheme 4). Further reaction of these compounds under conditions of their formation afforded, in addition, the A‐nor 1,5‐cyclization products 13 and 16 (from 10 ) and 12 (from 11 ) (see also Scheme 6) and the 6‐iodo‐5,6‐secolactones 17 and 19 (from 14 and 15 , resp.) and 4‐iodo‐4,5‐secolactone 18 (from 15 ) (see also Scheme 7). Oxidations of 5β‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 9 ) with both hypoiodite‐forming reagents (Pb(OAc)4/I2 and HgO/I2) proceeded similarly to the HgO/I2 reaction of the corresponding 5α‐hydroxy analogue 8 . Photolytic Pb(OAc)4 oxidation of 9 afforded, in addition to the (Z)‐ and (E)‐5,10‐seco 1(10)‐unsaturated ketones 10 and 11 , their isomeric 5,10‐seco 10(19)‐unsaturated ketone 22 , the acetal 5‐acetate 21 , and 5β,19‐epoxy derivative 23 (Scheme 9). Exceptionally, in the thermal Pb(OAc)4 oxidation of 9 , the 5,10‐seco ketones 10, 11 , and 22 were not formed, the only reaction being the stereoselective formation of the 5,10‐ethers with the β‐oriented epoxy bridge, i.e. the (10R)‐enol ether 20 and (5S,10R)‐acetal 5‐acetate 21 (Scheme 8). Possible mechanistic interpretations of the above transformations are discussed.  相似文献   

16.
The efficient synthesis of Oβ‐D ‐ribofuranosyl‐(1″→2′)‐guanosine‐5″‐O‐phosphate and Oβ‐D ‐ribofuranosyl‐(1″→2′)‐adenosine‐5″‐O‐phosphate, minor tRNA components, have been developed, and their conformational properties were examined by NMR spectroscopy.  相似文献   

17.
The incorporation of the β‐amino acid residues into specific positions in the strands and β‐turn segments of peptide hairpins is being systematically explored. The presence of an additional torsion variable about the C(α) C(β) bond (θ) enhances the conformational repertoire in β‐residues. The conformational analysis of three designed peptide hairpins composed of α/β‐hybrid segments is described: Boc‐Leu‐Val‐Val‐DPro‐β Phe ‐Leu‐Val‐Val‐OMe ( 1 ), Boc‐Leu‐Val‐β Val ‐DPro‐Gly‐β Leu ‐Val‐Val‐OMe ( 2 ), and Boc‐Leu‐Val‐β Phe ‐Val‐DPro‐Gly‐Leu‐β Phe ‐Val‐Val‐OMe ( 3 ). 500‐MHz 1H‐NMR Analysis supports a preponderance of β‐hairpin conformation in solution for all three peptides, with critical cross‐strand NOEs providing evidence for the proposed structures. The crystal structure of peptide 2 reveals a β‐hairpin conformation with two β‐residues occupying facing, non‐H‐bonded positions in antiparallel β‐strands. Notably, βVal(3) adopts a gauche conformation about the C(α) C(β) bond (θ=+65°) without disturbing cross‐strand H‐bonding. The crystal structure of 2 , together with previously published crystal structures of peptides 3 and Boc‐β Phe ‐β Phe ‐DPro‐Gly‐β Phe ‐β Phe ‐OMe, provide an opportunity to visualize the packing of peptide sheets with local ‘polar segments' formed as a consequence of reversal peptide‐bond orientation. The available structural evidence for hairpins suggests that β‐residues can be accommodated into nucleating turn segments and into both the H‐bonding and non‐H‐bonding positions on the strands.  相似文献   

18.
A Ph3P‐catalyzed cyclization of α‐halogeno ketones 2 with dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) 3 produced halogenated α,β‐unsaturated γ‐butyrolactone derivatives 4 in good yields (Scheme 1, Table). The presence of electron‐withdrawing groups such as halogen atoms at the α‐position of the ketones was necessary in this reaction. Cyclization of α‐chloro ketones resulted in higher yields than that of the corresponding α‐bromo ketones. Dihalogeno ketones similarly afforded the expected γ‐butyrolactone derivatives in high yields.  相似文献   

19.
The known glucaro‐1,5‐lactam 8 , its diastereoisomers 9 – 11 , and the tetrahydrotetrazolopyridine‐5‐carboxylates 12 – 14 were synthesised as potential inhibitors of β‐D ‐glucuronidases and α‐L ‐iduronidases. The known 2,3‐di‐O‐benzyl‐4,6‐O‐benzylidene‐D ‐galactose ( 16 ) was transformed into the D ‐galactaro‐ and L ‐altraro‐1,5‐lactams 9 and 11 via the galactono‐1,5‐lactam 21 in twelve steps and in an overall yield of 13 and 2%, respectively. A divergent strategy, starting from the known tartaric anhydride 41 , led to the D ‐glucaro‐1,5‐lactam 8 , D ‐galactaro‐1,5‐lactam 9 , L ‐idaro‐1,5‐lactam 10 , and L ‐altraro‐1,5‐lactam 11 in ten steps and in an overall yield of 4–20%. The anhydride 41 was transformed into the L ‐threuronate 46 . Olefination of 46 to the (E)‐ or (Z)‐alkene 47 or 48 followed by reagent‐ or substrate‐controlled dihydroxylation, lactonisation, azidation, reduction, and deprotection led to the lactams 8 – 11 . The tetrazoles 12 – 14 were prepared in an overall yield of 61–81% from the lactams 54, 28 , and 67 , respectively, by treatment with Tf2O and NaN3, followed by saponification, esterification, and hydrogenolysis. The lactams 8 – 11 and 40 and the tetrazoles 12 – 14 are medium‐to‐strong inhibitors of β‐D ‐glucuronidase from bovine liver. Only the L ‐ido‐configured lactam 10 (Ki = 94 μM ) and the tetrazole 14 (Ki = 1.3 mM ) inhibit human α‐L ‐iduronidase.  相似文献   

20.
Five β‐peptide thioesters ( 1 – 5 , containing 3, 4, 10 residues) were prepared by manual solid‐phase synthesis and purified by reverse‐phase preparative HPLC. A β‐undecapeptide ( 6 ) and an α‐undecapeptide ( 7 ) with N‐terminal β3‐HCys and Cys residues were prepared by manual and machine synthesis, respectively. Coupling of the thioesters with the cysteine derivatives in the presence of PhSH (Scheme and Fig. 1) in aqueous solution occurred smoothly and quantitatively. Pentadeca‐ and heneicosapeptides ( 8 – 10 ) were isolated, after preparative RP‐HPLC purification, in yields of up to 60%. Thus, the so‐called native chemical ligation works well with β‐peptides, producing larger β3‐ and α/β3‐mixed peptides. Compounds 1 – 10 were characterized by high‐resolution mass spectrometry (HR‐MS) and by CD spectroscopy, including temperature and concentration dependence. β‐Peptide 9 with 21 residues shows an intense negative Cotton effect near 210 nm but no zero‐crossing above 190 nm, (Figs. 2–4), which is characteristic of β‐peptidic 314‐helical structures. Comparison of the CD spectra of the mixed α/β‐pentadecapeptide ( 10 ) and a helical α‐peptide (Fig. 5) indicate the presence of an α‐peptidic 3.613 helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号