首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Copper(II) complex of a Schiff base ligand derived from pyrrolcarbaldehyde and o‐phenylenediamine (H2L) has been synthesized and encapsulated in Y‐zeolite matrix. The hybrid material has been characterized by elemental analysis, IR and UV‐Vis spectroscopic studies as well as X‐ray diffraction (XRD) pattern. The encapsulated copper(II) catalyst is an active catalyst for the oxidation of cyclooctene and cyclohexene using H2O2 as oxidant. Under the optimized reaction conditions 81% conversion of cyclohexene with 65% selectivity for 2‐cyclohexenone formation and 87% conversion of cyclooctene with 46% selectivity for epoxide formation were obtained.  相似文献   

2.
Ce(IV) salophen encapsulated into dealuminated Y zeolite was prepared by the flexible ligand method. Incorporation of TiO2 into nanocages of dealuminated Y zeolite was performed by the impregnation method. The obtained photocatalyst was characterized by FT-IR, XRD, DRS, SEM, EDS and ICP techniques. The amount of Ce(salophen) in the zeolite supercages was 0.07 mg/g of encapsulated zeolite. This catalytic system was investigated in the photodegradation of 4-nitrophenol. In this work, the effect of dark conditions, and visible and UV illumination was investigated for the degradation of 4-nitrophenol. In addition, the effect of other parameters including catalyst loading, H2O2 and TiO2 was studied in the degradation of 4-nitrophenol. The obtained results reveal that the photocatalyst performance depends on catalyst loading, the presence of H2O2, and UV illumination.  相似文献   

3.
This paper describes an electrochemical coupling epoxidation of cyclohexene by molecular oxygen (O2) under mild reaction conditions. Herein, the electroreduction of O2 to hydrogen peroxide (H2O2) efficiently proceeds in a relatively environmentally friendly acetone/water medium containing electrolytes at 25–30 °C on a self-assembled H type of electrolysis cell with tree electrodes system, providing ca. 44.3 mM concentration of H2O2 under the optimal electrolysis conditions. The epoxidation of cyclohexene with in situ generated H2O2 simultaneously occurs upon catalysis by metal complexes, giving ca. 19.8 % of cyclohexene conversion with 78 % of epoxidative selectivity over the best catalyst 5-Cl-7-I-8-quinolinolato manganese(III) complex (Q3MnIII (e)). The present electrochemical coupling epoxidation result is nearly equivalent to the epoxidation of cyclohexene with adscititious H2O2 catalyzed by the Q3MnIII (e).  相似文献   

4.
New lead structures for olefin oxidation catalysts have been obtained from a combinatorial library of 5760 metal–ligand complexes (see the microscopy picture). Iron complexes led to clean epoxide product formation using H2O2 as the terminal oxidant. Parallel libraries were used to determine ligand features important for high catalytic activity and to identify enantioselective catalyst structures (see the Equation).  相似文献   

5.
《中国化学会会志》2018,65(4):435-444
An experimental design methodology was applied to optimize cyclohexene epoxidation with hydrogen peroxide in the presence of acid‐activated montmorillonite clay supported on 11‐molybdovanado‐phosphoric acid, with the Keggin structure H4[PVMo11O40] · 13H2O (PVMo) as catalyst. The statistical study of the process was achieved through a two‐level, full‐factorial experimental design with five process parameters. The significant input variables (key factors) that influenced the performance of cyclohexene oxidation are the catalyst weight, catalyst loading, temperature, H2O2 concentration, and the reaction time. The effect of the individual parameters and their interaction effects on the cyclohexene conversion, as well as the selectivity of cyclohexane‐1,2‐diol, was determined, and a statistical model of the process was developed. The process was optimized by considering the two responses simultaneously, which allows defining the optimal regions for the significant process variables. The optimal conditions were obtained for the catalyst weight of 0.05 g, temperature of 70°C, and reaction time of 9 h, with 20% PVMo as the active phase and hydrogen peroxide as oxidant.  相似文献   

6.
Copper(II) complex of a Schiff base ligand (H2L) was synthesized, characterized, and encapsulated in the cavities of zeolite-Y by a fixed ligand method. The zeolite encapsulated metal complex (CuL-Y) was characterized using FT-IR, UV–Vis and atomic absorption spectroscopy, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), scanning electron microscopy images (SEM), energy-dispersive X-ray spectroscopy (EDX), and Brunauer-Emmett-Teller (BET). The catalytic activity and electrochemical behavior of the encapsulated complex has been studied in the oxidation of a wide range of sulfides and olefins using H2O2 in ethanol. This heterogeneous catalytic system shows a dramatic increase in total turnover number (46,500) for oxidation of styrene. It could be readily reused for at least eight successive times without discernible activity and selectivity deterioration, which displays potential for practical applications.  相似文献   

7.
A new epoxidation catalyst has been prepared by grafting a molybdenum(VI)–oxodiperoxo complex containing an oxazine ligand, [MoO(O2)2(phox)], on chloro‐functionalized Fe3O4 nanoparticles. The synthesized heterogeneous catalyst (MoO(O2)2(phox)/Fe3O4 was characterized using powder X‐ray diffraction, scanning and transmission electron microscopies, vibrating sample magnetometry, energy‐dispersive X‐ray analysis, Fourier transform infrared spectroscopy and inductively coupled plasma atomic emission spectroscopy. The immobilized complex gave high product yields and high selectivity for epoxide compared to the corresponding homogeneous one in the epoxidation of various olefins in the presence of tert ‐butyl hydroperoxide at 95°C without any co‐solvent. Also, the heterogeneous catalyst can be recycled without a noticeable change in activity and selectivity.  相似文献   

8.
A series of Fe(III), Co(II) and Cu(II) complexes of 8‐quinolinol were encapsulated into the supercages of zeolite? Y and characterized by X‐ray diffraction, SEM, N2 adsorption/desorption, FT‐IR, UV–vis spectroscopy, elemental analysis, ICP‐AES and TG/DSC measurements. The encapsulation was achieved by a flexible ligand method in which the transition metal cations were first ion‐exchanged into zeolite Y and then complexed with 8‐quinolinol ligand. The metal‐exchanged zeolites, metal complexes encapsulated in zeolite–Y plus non‐encapsulated homogeneous counterparts were all screened as catalysts for the aerobic oxidation of styrene under mild conditions. It was found that the encapsulated complexes always showed better activity than their respective non‐encapsulated counterparts. Moreover, the encapsulated iron complex showed good recoverability without significant loss of activity and selectivity within successive runs. Heterogeneity test for this catalyst confirmed its high stability against leaching of active complex species into solution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A new dioxomolybdenum (VI) complex with tridentate hydrazone Schiff base ligand (H2L) derived from 2‐hydroxy‐5‐nitrobenzaldehyde and benzhydrazide was synthesized and designated as [MoO2L (DMF)]·2H2O. The Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) nanocatalyst was successfully prepared by grafting H2L ligand on modified Fe3O4 nanoparticles followed by reacting with MoO2 (acac)2. The complex and nanocatalyst were characterized by various techniques such as elemental analysis, mass, FT‐IR, UV–Vis, 1H NMR, 13C{1H}‐NMR, TGA, XRD, XPS, TEM, SEM and VSM. The catalytic activity of [MoO2L (DMF)]2H2O and Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) were evaluated for the oxidation of various alkenes (cyclooctene, norbornene, cyclohexene, styrene and α‐methyl styrene) in the presence of tert‐butylhydroperoxide as oxidant. The results revealed that the catalysts were especially efficient for oxidation of cyclooctene and norbornene with 100% selectivity towards corresponding epoxide product. Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) showed higher catalytic activity, shorter reaction time and higher turnover number (TON) compared with homogeneous complex [MoO2L (DMF)]·2H2O. Moreover, simple magnetic recovery from the reaction mixture and reuse for several times with no significant loss in activity were other advantages of the nanocatalyst.  相似文献   

10.
Transition metal [M = VO (IV) and/or Cu (II)] complexes with Schiff base ligand, (Z)‐2‐((2‐hydroxybenzylideneamino)phenol (H2L) have been entrapped in the super cages of zeolite‐Y by Flexible Ligand Method. Synthesized materials have been characterized by preferential physico‐chemical techniques such as inductively coupled plasma optical emission spectroscopy (ICP‐OES), elemental analyses (CHN), fourier transmission infrared spectroscopy (FTIR), electronic and UV‐reflectance spectra, Brunauer–Emmett–Teller (BET) surface area measurements, scanning electron micrographs (SEMs), X‐ray diffraction patterns (XRD) and thermogravimetric analysis (TGA). The catalytic competence of zeolite‐Y entrapped transition metal complexes was examined in Baeyer‐Villiger (BV) oxidation of cyclopentanone using 30% H2O2 as an oxidant beside neat complexes to check the aptitude of heterogeneous catalysis over the homogeneous system. The effect of experimental variables such as mole ratio of substrate to an oxidant, amount of catalyst, reaction time, varying oxidants and solvents on the conversion of cyclopentanone was also tested. Under the optimized reaction conditions, one of the zeolite‐Y entrapped transition metal complex viz. [VO(L)H2O]‐Y [where L = (Z)‐2‐((2‐hydroxybenzylideneamino)phenol] was found to be a potential contender by providing 80.22% conversion of cyclopentanone (TON: 10479.42), and the selectivity towards δ‐valerolactone was 83.56%.  相似文献   

11.
吴江浩  蒋平平  冷炎  叶媛园  秦晓洁 《催化学报》2013,34(12):2236-2244
合成并表征了一类双核长链烷基咪唑阳离子修饰的过氧磷钨杂多酸盐催化剂[Dnmin]1.5PW4O24,考察了催化剂在过氧化氢为氧源的烯烃环氧化反应中的催化活性.研究表明,这类催化剂在反应过程中表现出相转移催化现象,并具有较高的催化活性和选择性.其中,双核十二烷基咪唑杂多酸盐催化剂[D12min]1.5PW4O24的活性最佳,其环己烯转化率和环氧环己烷选择性分别达到97.7%和96.3%.催化剂在经过简单离心分离后可重复使用,重复使用4次后环己烯转化率和环氧环己烷选择性仍可分别达到72.4%和97.2%.催化剂[D12min]1.5PW4O24在其它几种烯烃的环氧化反应中均表现出相转移催化特性,且具有较高的催化活性.  相似文献   

12.
When the molybdenum oxo(peroxo) acetylide complex [CpMo(O? O)(O)C?CPh] is used as a catalyst for the oxidation of olefins, completely different product selectivity is obtained depending on the oxidant employed. When tert‐butyl hydroperoxide (TBHP, 5.5 M ) in dodecane is used as the oxidant for the oxidation of cyclohexene, cyclohexene oxide is formed with high selectivity. However, when H2O2 is used as the oxidant, the corresponding cis‐1,2‐diol is formed as the major product. Calculations performed by using density functional theory revealed the nature of the different competing mechanisms operating during the catalysis process and also provided an insight into the influence of the oxidant and hydrogen bonding on the catalysis process. The mechanistic investigations can therefore serve as a guide in the design of molybdenum‐based catalysts for the oxidation of olefins.  相似文献   

13.
The catalytic oxidation of alkenes by most iron porphyrins using a variety of oxygen sources, but generally not dioxygen, yields the epoxide with minor quantities of other products. The turnover numbers for these catalysts are modest, ranging from a few hundred to a few thousand depending on the porphyrin structure, axial ligands, and other reaction conditions. Halogenation of substituents increases the activity of the metalloporphyrin catalyst and/or makes it more robust to oxidative degradation. Oxidation of cyclohexene by 5,10,15,20‐tetrakis‐(2,3,4,5,6‐pentafluorophenyl)porphyrinato iron(III), ([FeIII(tppf20)]) and H2O2 is typical of the latter: the epoxide is 99 % of the product and turnover numbers are about 350. 1 – 4 Herein, we report that dynamic organic nanoparticles (ONPs) of [FeIII(tppf20)] with a diameter of 10 nm, formed by host–guest solvent methods, catalytically oxidize cyclohexene with O2 to yield only 2‐cyclohexene‐1‐one and 2‐cyclohexene‐1‐ol with approximately 10‐fold greater turnover numbers compared to the non‐aggregated metalloporphyrin in acetonitrile/methanol. These ONPs facilitate a greener reaction because the reaction solvent is 89 % water and O2 is the oxidant in place of synthetic oxygen sources. This reactivity is unexpected because the metalloporphyrins are in close proximity and oxidative degradation of the catalyst should be enhanced, thus causing a significant decrease in catalytic turnovers. The allylic products suggest a different oxidative mechanism compared to that of the solvated metalloporphyrins. These results illustrate the unique properties of some ONPs relative to the component molecules or those attached to supports.  相似文献   

14.
A mononuclear dioxo vanadium(V) complex of a hydrazone ONO donor ligand, [VVO2(L1)] (1), was synthesized by the reaction of V2O5 and terephthalic acid with H2L1 in 1:1:1 mol ratio, while an oxo-bridged bis(vanadium(IV)oxo) complex, [μ 2–O–{VIVO(L2)}2] (2), was synthesized by the treatment of isonicotinic acid hydrazide, salicylaldehyde and CoSO4·7H2O with bis(acetylacetonato)oxovanadium(IV) (H2L1 = isonicotinic acid(2-hydroxy-benzylidene)-hydrazide, H2L2 = isonicotinic acid (1-methyl-3-oxo-butylidene)-hydrazide). The complexes were characterized by elemental analyses and spectroscopic methods. The crystal structure of complex 2 was determined by X-ray analysis. The complexes were tested as catalysts for the oxidation of cycloalkenes and benzyl alcohol using H2O2 as terminal oxidant. Excellent selectivity was achieved in the oxidation of cyclohexene.  相似文献   

15.
A series of zeolite-Y encapsulated hybrid catalysts, [M(STCH)·xH2O]-Y have been prepared by encapsulating Schiff base complexes [where M?=?Mn(II), Fe(II), Co(II), Ni(II); (x?=?3) and Cu(II); (x?=?1); H2STCH?=?salicylaldehyde thiophene-2-carboxylic hydrazone] in zeolite-Y matrix by flexible ligand method. These hybrid materials have been characterized by various physico-chemical techniques such as ICP-OES, elemental analyses, (FT-IR and electronic) spectral studies, BET, scanning electron micrographs, thermal analysis and X-ray powder diffraction patterns. X-ray powder diffraction analysis reveals that the structural integrity of the mother zeolite in the hybrid material remained intact upon immobilization of the complex. Density functional theory is employed to calculate the relaxed structure, bond angle, bond distance, dihedral angle, difference of highest occupied molecular orbital and lowest unoccupied molecular orbital energies gap and electronic density of states of ligand and their neat transition metal complexes. The hybrid materials are active catalysts for the hydroxylation of phenol using hydrogen peroxide (30% H2O2) as an oxidant in order to selectively synthesize catechol or hydroquinone, amongst them [Cu(STCH)·H2O]-Y shown the highest % of selectivity towards catechol (81.3%).  相似文献   

16.
The system of V2O5?CTiO2 catalysts with V2O5 contents from 5 to 20 wt% were prepared by the sol?Cgel route and calcined at 500?°C. The mixed oxide series presented the crystalline structure of TiO2 anatase phase. BET analysis showed a medium surface area decreasing from 73 to 19?m2 g?1 when V2O5 content rose from 5 to 20 wt%. The results of pyridine adsorption followed by FT-IR indicate that the catalysts display identical surface acid densities, independently of the V2O5 content, and both Br?nsted and Lewis acid sites are present on their surfaces. The V2O5 system presents an activity and selectivity during the cyclohexene oxidation reaction. The presence of V2O5 increases the catalyst efficiency and leads to a selectivity change from cyclohexenol (blank test) to epoxide, with a maximum for 15 wt% V2O5. The conversion of cyclohexene was 46?% while the selectivity to epoxide was higher (75?%).  相似文献   

17.
高宇  张月成  赵继全 《催化学报》2009,30(12):1243-1247
 利用 2-吡啶甲醛、6-甲基-2-吡啶甲醛或 6-异丙基-2-吡啶甲醛与对甲基苯胺缩合制得双氮席夫碱配体, 考察了席夫碱配体以及溶剂和温度对甲基三氧化铼 (MTO) 催化不同结构烯烃环氧化反应的影响. 结果表明, 这些席夫碱配体与 MTO 构成的催化剂体系在甲醇溶剂中的催化性能最好, 双氮配体能显著提高环氧化反应的选择性. 当以甲醇为溶剂, 环己烯为底物, 在 –10 oC 反应 12 h 时, 环己烯转化率和环氧化物选择性均可达 100%. 席夫碱的配位能力越强, 越有利于提高环氧化物选择性, 而其配位能力取决于吡啶环中 6-位取代基的电子和立体结构. 给电子能力较强和空间位阻较小的烷基对应的配体的配位能力较强.  相似文献   

18.
A new efficient heterogeneous catalyst was introduced for the epoxidation of styrene. The catalyst was obtained from deposition of gold nanoparticles on the cellulose aerogel. The catalyst was characterized with XRD, TGA, EDX, BET, FAAS and SEM. High yield and excellent selectivity were achieved for the epoxidation of styrene in solvent-free conditions at room temperature using H2O2 as a green oxidant during 1 h. The reaction has some advantages such as solvent-free and mild reaction conditions, low catalyst loading, high yield, excellent selectivity, green oxidant and short reaction duration. In addition, the catalyst is recyclable and applicable for six times without decrease in yield.  相似文献   

19.
The hydroxylation of benzene and phenol with in-situ-generated oxidant was performed under mild reaction conditions over the bicatalytic system which has dual abilities of direct H2O2 generation and the hydroxylation activity by combining Pd-zeolite with redox zeolites such as TS-1, Ti-MCM-41, V-MCM-41 and Fe-zeolite. The amount of H2O2 formed directly from H2 and O2 increases with increasing Pd loading over zeolite up to 0.6% and subsequently decreases slightly as the Pd loading increases. The optimum amount of H2O2 produced is 6.4 mmol. Over Pd/HBEA + Fe/Y, when H2 : O2 = 40 : 40 ml/min is supplied, phenol conversion increases from 4.6% at 2 h to 13.6% at 8 h with high catechol selectivity in the range of 65–79%. The hydroxylation activities over redox catalyst with H2O2 are compared. Hydroxylation activity is improved by encapsulating FePc onto Y zeolite. In terms of TON, FePc/Y exhibits 3.5 times higher capacity than Fe/Y.  相似文献   

20.
Wang  Songlin  Li  Changgong  Wen  Yiqiang  Wei  Huijuan  Li  Baojun  Wang  Xiangyu 《Research on Chemical Intermediates》2016,42(12):8131-8142

Microparticle HZSM-5 zeolite (MPZ) has been prepared without employing any organic templates, and used as a catalyst for the hydration of cyclohexene to synthesize cyclohexanol. MPZ exhibits better catalytic performance and superior settlement separation property than those of commercial HZSM-5 prepared by the traditional method using an organic template. The stability of MPZ has been investigated for a 1200-h test, and the regenerated performance of MPZ has also been investigated. The results show that although MPZ was reused for five recycles, the high cyclohexene conversion of 9.6 % and the high cyclohexanol selectivity of 96.8 % are still attained after the fifth regeneration. FT-IR, XRD and N2 adsorption–desorption characterizations show that coke deposit on the surface and in the channels of MPZ is the main reason for the deactivation. ICP-AES, SEM–EDS and NH3-TPD characterizations indicate that hydrothermal dealumination reduces the strong acidity and accelerates the catalyst deactivation. The spent catalyst by regeneration with H2O2 could be recovered to its initial high catalytic activity, due to the restored appropriate channels and exposed active sites.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号