首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lu H  Liu X  Mao D  Gong Y  Wang G 《Optics letters》2011,36(16):3233-3235
An optical effect analogous to electromagnetically induced transparency (EIT) is observed in nanoscale plasmonic resonator systems. The system consists of a slot cavity as well as plasmonic bus and resonant waveguides, where the phase-matching condition of the resonant waveguide is tunable for the generation of an obvious EIT-like coupled resonator-induced transparency effect. A dynamic theory is utilized to exactly analyze the influence of physical parameters on transmission characteristics. The transparency effect induced by coupled resonance may have potential applications for nanoscale optical switching, nanolaser, and slow-light devices in highly integrated optical circuits.  相似文献   

2.
In this paper, based on the constructive interference of plasmonic dipolar and quadrupolar modes, a classical analogue of electromagnetically induced absorption (EIA) is demonstrated theoretically in a stacked metamaterial consisting of a short metal strip (which acts as a bright resonator) and a long metal strip (acting as a dark resonator), which has been reported to support the electromagnetically induced transparency (EIT) effect. The transition from EIA to EIT can be clearly observed in the absorbance spectra via varying the vertical spacing between two resonant oscillators. With the help of the coupled two-oscillator model, the phase shift between the bright and dark resonance modes is calculated by fitting the simulated absorbance spectra, which reveals the physical mechanisms behind constructive and destructive interference effects in EIT/EIA metamaterials.  相似文献   

3.
Fano共振效应是一种具有非对称线型的共振散射现象,起源于共振过程和非共振过程的量子干涉效应。近年来,在等离子体纳米结构中Fano共振现象也被发现,并成为纳米光子学的一个研究热点。等离子体Fano共振通常具有较窄的光谱线宽,且不能直接与入射光耦合,只能局域在近场,强的近场局域特性可以获得巨大的表面电磁场增强。由于等离子体Fano共振独特的光学特性,已经被应用到单分子探测、高灵敏度传感、增强光谱、完美吸收、电磁诱导透明和慢光光子学器件等众多领域当中。  相似文献   

4.
In this Letter, we demonstrate that electron spin can influence near-field mediated light propagation through a dense ensemble of subwavelength bimetallic ferromagnetic/nonmagnetic microparticles. In particular, we show that ferromagnetic particles coated with nonmagnetic metal nanolayers exhibit an enhanced magnetic field controlled attenuation of the electromagnetic field propagated through the sample. The mechanism is related to dynamic, electromagnetically induced electron spin accumulation in the nonmagnet. The discovery of an electron spin phenomenon in the light interaction with metallic particles opens the door to the marriage of spintronic and plasmonic technologies and could pave the way for the development of light-based devices that exploit the electron spin state.  相似文献   

5.
A type of a plasmonic waveguide has been proposed featuring an "open" design that is easy to manufacture, simple to excite and offers convenient access to a plasmonic mode. Optical properties of photonic bandgap (PBG) plasmonic waveguides are investigated experimentally by leakage radiation microscopy and numerically using the finite element method confirming photonic bandgap guidance in a broad spectral range. Propagation and localization characteristics of a PBG plasmonic waveguide have been discussed as a function of the wavelength of operation, waveguide core size, and the number of ridges in the periodic reflector for fundamental and higher order plasmonic modes of the waveguide.  相似文献   

6.
If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast speetrM feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.  相似文献   

7.
We study a three-mode double-cavity optomechanical system in which an oscillating membrane of perfect reflection is inserted between two fixed mirrors of partial transmission. We find that electromagnetically induced transparency (EIT) can be realized and controlled in this optomechanical system by adjusting the relative intensity and the relative phase between left-hand and right-hand input (probe and coupling) fields. In particular, one perfect EIT window is seen to occur when the two probe fields are exactly out of phase and the EIT window's width is very sensitive to the relative intensity of two coupling fields. Our numerical findings may be extended to achieve optomechanical storage and switching schemes applicable in quantum information processing.  相似文献   

8.
We numerically demonstrate a plasmonic analogue of electromagnetically induced transparency in a simple complementary metamaterial, the unit cell of which consists of two bright slot-structures in a homogenous gold film deposited on a glass substrate. A pronounced transparency peak within a broad reflectance resonance spectrum is activated through the coupling in the asymmetric elements when the symmetry of two slot-structures is broken. Moreover, the strength and width of the reflectance transparency peak can be tuned by controlling the asymmetric degree or spacing of two slot-structures. In addition, the presence of the reflectance transparency window is also accompanied by slow-light effect, where its group velocity is reduced by a factor of over 100. Therefore, this complementary metamaterial could have the potential applications in slow-light and filtering devices.  相似文献   

9.
简要介绍了在原子类原子小量子系统光学特性的量子相干调控应用基础研究方面所取得的一些成果,主要包括周期调制场控制弱光孤子传输、光学腔超窄线宽输出、非对称双量子阱中光学前驱波的分离以及极性分子系统中的电磁诱导透明现象等.  相似文献   

10.
吕纯海  谭磊  谭文婷 《物理学报》2011,60(2):24204-024204
从主方程出发,通过解析求解密度矩阵非对角元,研究了压缩真空中Λ型三能级原子的电磁诱导透明现象(EIT).研究结果表明:EIT显著地依赖于相干光场的相位、压缩真空的压缩强度和压缩相位.Λ型三能级原子不但有电磁诱导透明和慢光速现象,而且还会表现出对探测光的增益、快光速和反向光速效应;且Λ型三能级原子对探测光场的吸收和增益与探测光强度有关,这与普通真空中不同. 关键词: 压缩真空 电磁诱导透明 增益  相似文献   

11.
Electromagnetically induced transparency and absorption of a monochromatic light controlled by a radio frequency field in the cold multi-Zeeman-sublevel atoms are theoretically investigated. These Zeeman sublevels are coupled by a radio frequency(RF) field. Both electromagnetically induced transparency and electromagnetically induced absorption can be obtained by tuning the frequency of RF field for both the linear polarization and elliptical polarization monochromatic lights. When the transfer of coherence via spontaneous emission from the excited state to the ground state is considered, electromagnetically induced absorption can be changed into electromagnetically induced transparency with the change of intensity of radio field. The transparency windows controlled by the RF field can have potential applications in the magnetic-field measurement and quantum information processing.  相似文献   

12.
We experimentally study the phase regulated switch between elcctromagnctically induced trans- parency and electromagmetically induced absorption in probe transmission signal and the conver- sion between enhancement and suppression in four-wave mixing and fluorescence signals for the first time. By changing the relative phase, electromagnetically induced transparency can be eonverted into electromagnetically induced absorption. In this process, the conversion from suppression to enhancement is also obtained in four-wave mixing and fluorescence signals. This research can be applied in non-linear optical device like optical switch and optical wavelength convertor.  相似文献   

13.
A plasmonic waveguide coupled system that is composed of a square ring cavity and a metal–insulator–metal(MIM)waveguide with two silver baffles is proposed. The transmission and reflection properties of the proposed plasmonic system are investigated numerically using the finite element method. The normalized H_z field distributions are calculated to analyze the transmission mode in the plasmonic system. The extreme destructive interference between light mode and dark mode causes plasmonically induced reflection(PIR) window in the transmission spectrum. The PIR window is fitted using the coupled mode theory. The analytical result agrees with the simulation result approximately. In addition, the PIR window can be controlled by adjusting structural parameters and filling different dielectric into the MIM waveguide and the square ring cavity. The results provide a new approach to designing plasmonic devices.  相似文献   

14.
Noble metal nanostructures possess novel optical properties because of their collective electronic oscillations,known as surface plasmons(SPs).The resonance of SPs strongly depends on the material,surrounding environment,as well as the geometry of the nanostructures.Complex metal nanostructures have attracted research interest because of the degree of freedom in tailoring the plasmonic properties for more advanced applications that are unattainable by simple ones.In this review,we discuss the plasmonic properties of several typical types of complex metal nanostructures,that is,electromagnetically coupled nanoparticles(NPs),NPs/metal films,NPs/nanowires(NWs),NWs/NWs,and metal nanostructures supported or coated by dielectrics.The electromagnetic field enhancement and surface-enhanced Raman scattering applications are mainly discussed in the NPs systems where localized SPs have a key role.Propagating surface plasmon polaritons and relevant applications in plasmonic routers and logic gates using NWs network are also reviewed.The effect of dielectric substrates and surroundings of metal nanostructures to the plasmonic properties is also discussed.  相似文献   

15.
We propose an efficient scheme for optimizing the optical memory of a sequence of signal light pulses in a system of ultracold atoms in ∧ configuration.The memory procedure consists of write-in,storage,and retrieval phases.By applying a weak microwave field in the storage stage,additional phase-dependent terms are included,and the contrast of the output signal pulses can be dynamically controlled(enhanced or suppressed) through manipulating the relative phase φ between optical and microwave fields.Our numerical analysis shows that the contrast is enhanced to the most extent when φ = 1.5π.In addition,the contrast is in proportion to the Rabi frequency of the microwave field with a certain relative phase.  相似文献   

16.
The fluorescence characteristics of a dipole molecule in the vicinity of a spherical multilayered metallic nanoshell (a plasmonic nanomatryoska) of ultra-small dimensions is studied via electrodynamic modeling, where we have computed the fluorescence decay rates, the shifts in emission frequency, and the overall fluorescence yields for molecular dipoles of both tangential and radial orientations. Our focus is on structures of ultra small dimensions in order to elucidate the possibly novel nonlocal optical effects in such a phenomenon. The results show that at very close distances between the molecule and the nanoshell, the nonlocal effects in general lead to smaller structure-induced effects with broadened and blue-shifted plasmonic resonances. These effects include overall smaller induced decay rates, smaller red-shifts in emission frequency, and somewhat larger fluorescence yields at low emission frequencies. Physical interpretation of our simulation results is provided.  相似文献   

17.
HW Lee  MA Schmidt  PS Russell 《Optics letters》2012,37(14):2946-2948
A pair of gold nanowires, incorporated into a photonic crystal fiber, acts as a plasmonic "molecule." Hybridized modes are excited at specific wavelengths by launching light into the glass core. The formation of bonding and antibonding solutions results in a modal splitting of more than 100 nm, even though the spatial separation between the wires is larger than 3 μm. The study provides insight into multiwire plasmonic devices with applications as polarizers or filters in near-field optics, nonlinear plasmonics, optical sensing, and telecommunications.  相似文献   

18.
A reflection-type electromagnetically induced transparency(EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum(THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements.  相似文献   

19.
The time-dependent four-wave mixing(FWM) is analyzed in a four-level double semiconductor quantum well. The results show that both the amplitude and the conversion efficiency of the FWM field are enhanced with increasing the strength of two-photon Rabi frequency. Interestingly, when the one-photon detuning becomes stronger the control field corresponding to the maximum efficiency increases. Such a controlled enhanced FWM may be used to generate coherent short-wave length radiation, and it can have potential applications in quantum control and communications.  相似文献   

20.
Electromagnetically induced self-imaging   总被引:1,自引:0,他引:1  
Cheng J  Han S 《Optics letters》2007,32(9):1162-1164
We study the self-imaging and image-transforming properties of a probe field in a cold atomic medium with electromagnetically induced transparency (EIT). Due to the similarities between the gradient-index medium and the inhomogeneous index distribution of an EIT medium under the conditions of a negative probe detuning and a Gaussian control field, we find based on analytical investigations that there exists a kind of electromagnetically induced self-imaging phenomenon in cold atomic media. Numerical simulations clearly show that electromagnetically induced self-imaging is observable and controllable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号