首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
First-principles density-functional calculations are performed to investigate the thermal transport properties in graphene nanoribbons (GNRs). The dimensional crossover of thermal conductance from one to two dimensions (2D) is clearly demonstrated with increasing ribbon width. The thermal conductance of GNRs of a few nanometers width already exhibits an approximate low-temperature dependence of T(1.5), like that of 2D graphene sheets which is attributed to the quadratic nature of the dispersion relation for the out-of-plane acoustic phonon modes. Using a zone-folding method, we heuristically derive the dimensional crossover of thermal conductance with the increase of ribbon width. Combining our calculations with the experimental phonon mean-free path, some typical values of thermal conductivity at room temperature are estimated for GNRs and for 2D graphene sheet. Our findings clarify the issue of the low-temperature dependence of thermal transport in GNRs and suggest a calibration range of thermal conductivity for experimental measurements in graphene-based materials.  相似文献   

2.
欧阳方平  王焕友  李明君  肖金  徐慧 《物理学报》2008,57(11):7132-7138
基于第一性原理电子结构和输运性质计算,研究了单空位缺陷对单层石墨纳米带(包括zigzag型和armchair型带)电子性质的影响.研究发现,单空位缺陷使石墨纳米带在费米面上出现一平直的缺陷态能带;单空位缺陷的引入使zigzag型半导体性的石墨纳米带变为金属性,这在能带工程中有重要的应用价值;奇数宽度的armchair型石墨纳米带表现出金属特性,有着很好的导电性能,同时,偶数宽度的armchair型石墨带虽有金属性的能带结构,但却有类似半导体的伏安特性;单空位缺陷使得奇数宽度的armchair石墨纳米带导电 关键词: 石墨纳米带 单空位缺陷 电子结构 输运性质  相似文献   

3.
We report transport measurements through graphene on SrTiO(3) substrates as a function of magnetic field B, carrier density n, and temperature T. The large dielectric constant of SrTiO(3) very effectively screens long-range electron-electron interactions and potential fluctuations, making Dirac electrons in graphene virtually noninteracting. The absence of interactions results in an unexpected behavior of the longitudinal resistance in the N=0 Landau level and in a large suppression of the transport gap in nanoribbons. The "bulk" transport properties of graphene at B=0 T, on the contrary, are completely unaffected by the substrate dielectric constant.  相似文献   

4.
Xiao-Fang Ouyang 《中国物理 B》2022,31(7):77304-077304
Exploring the half-metallic nanostructures with large band gap and high carrier mobility is a crucial solution for developing high-performance spintronic devices. The electric and magnetic properties of monolayer zigzag black-phosphorene nanoribbons (ZBPNRs) with various widths are analyzed by means of the first-principles calculations. Our results show that the magnetic ground state is dependent on the width of the nanoribbons. The ground state of narrow nanoribbons smaller than 8ZBPNRs prefers ferromagnetic order in the same edge but antiferromagnetic order between two opposite edges. In addition, we also calculate the electronic band dispersion, density of states and charge density difference of 8ZBPNRs under the action of out-of-plane electric field. More interesting, the addition of out-of-plane field can modulate antiferromagnetic semiconductor to the half metal by splitting the antiferromagnetic degeneracy. Our results propose a new approach to realize half-metal in phosphorene, which overcomes the drawbacks of graphene/silicene with negligible band gap as well as the transitional metal sulfide (TMS) with low carrier mobility.  相似文献   

5.
欧阳方平  徐慧  魏辰 《物理学报》2008,57(2):1073-1077
采用第一性原理电子结构和输运性质计算研究了zigzag型单层石墨纳米带(具有armchair 边缘)的电子结构和输运性质及其边缘空位缺陷效应. 研究发现,完整边缘的zigzag型石墨纳米带是具有一定能隙的半导体带,边缘空位缺陷的存在使得纳米带能隙变小,且缺陷浓度越大,能隙越小,并发生了半导体-金属转变. 利用这些研究结果,将有助于在能带工程中实现其电子结构裁剪. 关键词: 石墨纳米带 空位缺陷 电子结构 输运性质  相似文献   

6.
欧阳方平  徐慧  魏辰 《中国物理 B》2008,17(2):1073-1077
采用第一性原理电子结构和输运性质计算研究了zigzag型单层石墨纳米带(具有armchair 边缘)的电子结构和输运性质及其边缘空位缺陷效应. 研究发现,完整边缘的zigzag型石墨纳米带是具有一定能隙的半导体带,边缘空位缺陷的存在使得纳米带能隙变小,且缺陷浓度越大,能隙越小,并发生了半导体-金属转变. 利用这些研究结果,将有助于在能带工程中实现其电子结构裁剪.  相似文献   

7.
崔洋  李静  张林 《物理学报》2021,(5):90-97
采用基于密度泛函理论的紧束缚方法计算研究了外加横向电场对边缘未加氢/加氢钝化的扶手椅型石墨烯纳米带的电子结构及电子布居数的影响.计算结果表明,石墨烯纳米带的能隙变化受其宽带影响.当施加沿其宽度方向的横向外加电场时,纳米带的能带结构及态密度都会产生较大的变化.对于具有半导体性的边缘未加氢纳米带,随着所施加电场强度的增加,会发生半导体-金属的转变.同时,电场也会对能级分布产生显著影响.外加电场导致纳米带内原子上电子布居数分布失去对称性,电场强度越大,其布居数不对称性越明显.边缘加氢钝化可以显著改变纳米带内原子上的布居数分布.  相似文献   

8.
扶手椅型石墨纳米带的双空位缺陷效应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用基于密度泛函理论的第一性原理电子结构和输运性质计算,研究了扶手椅型石墨纳米带(具有锯齿边缘)的双空位缺陷效应.研究发现:双空位缺陷的存在并没有改变石墨纳米带的金属特性,但改变了费米面附近的能带结构.同时,双空位缺陷的取向对石墨纳米带的输运性质有很重要的影响.对于奇数宽度的纳米带,斜向双空位缺陷使得石墨带导电性能减弱,而垂直双空位能基本保留原有的线性伏安特性,导电性能降低较少;对于偶数宽度的纳米带,斜向双空位缺陷会使石墨带导电性能明显增强,而垂直双空位缺陷则具有完整石墨带的输运性质. 关键词: 石墨纳米带 585双空位缺陷 电子结构 输运性质  相似文献   

9.
The electric field effect in ultrathin zigzag graphene nanoribbons containing only three or four zigzag carbon chains is studied by first-principles calculations, and the change of conducting mechanism is observed with increasing in-plane electric field perpendicular to the ribbon. Wider zigzag graphene nanoribbons have been predicted to be spin-splitted for both valence band maximum(VBM) and conduction band minimum(CBM) with an applied electric field and become half-metal due to the vanishing band gap of one spin with increasing applied field. The change of VBM for the ultrathin zigzag graphene nanoribbons is similar to that for the wider ones when an electric field is applied. However, in the ultrathin zigzag graphene nanoribbons, there are two kinds of CBMs, one is spin-degenerate and the other is spin-splitted, and both are tunable by the electric field. Moreover, the two CBMs are spatially separated in momentum space. The conducting mechanism changes from spin-degenerate CBM to spin-splitted CBM with increasing applied electric field. Our results are confirmed by density functional calculations with both LDA and GGA functionals, in which the LDA always underestimates the band gap while the GGA normally produces a bigger band gap than the LDA.  相似文献   

10.
First principles calculations have been performed to investigate the electronic structures and transport properties of defective graphene nanoribbons (GNRs) in the presence of pentagon-octagon-pentagon (5-8-5) defects. Electronic band structure results reveal that 5-8-5 defects in the defective zigzag graphene nanoribbon (ZGNR) is unfavorable for electronic transport. However, such defects in the defective armchair graphene nanoribbon (AGNR) give rise to smaller band gap than that in the pristine AGNR, and eventually results in semiconductor to metal-like transition. The distinct roles of 5-8-5 defects in two kinds of edged-GNR are attributed to the different coupling between π? and π subbands influenced by the defects. Our findings indicate the possibility of a new route to improve the electronic transport properties of graphene nanoribbons via tailoring the atomic structures by ion irradiation.  相似文献   

11.
The effects of magnetic atom on the band structure of zigzag-edged graphene nanoribbons are investigated by the density functional theory. The results show that for narrow zigzag-edged graphene nanoribbons, the band gap can be opened duo to the spin-up/spin-down charges being re-enriched on the edge sites. However, for the wide zigzag-edged graphene nanoribbons, a spin-up/spin-down half-metallic property can be observed. Moreover, it is found that the Seebeck coefficients in the narrow zigzag-edged graphene nanoribbons are reversed and enlarged, which provides a way to design novel thermoelectric device.  相似文献   

12.
We apply the nonequilibrium Green's function method based on density functional theory to investigate the electronic and transport properties of waved zigzag and armchair graphene nanoribbons. Our calculations show that out-of-plane mechanical deformations have a strong influence on the band structures and transport characteristics of graphene nanoribbons. The computed I-V curves demonstrate that the electrical conductance of graphene nanoribbons is significantly affected by deformations. The relationship between the conductance and the compression ratio is found to be sensitive to the type of the nanoribbon. The results of our study indicate the possibility of mechanical control of the electronic and transport properties of graphene nanoribbons.  相似文献   

13.
王伟华  卜祥天 《发光学报》2017,(12):1617-1621
基于密度泛函理论,采用第一性原理方法,计算了氧化石墨烯纳米带的电荷密度、能带结构和分波态密度。结果表明,石墨烯纳米带被氧化后,转变为间接带隙半导体,带隙值为0.375 e V。电荷差分密度表明,从C原子和H原子到O原子之间有电荷的转移。分波态密度显示,在导带和价带中C-2s、2p,O-2p,H-1s电子态之间存在强烈的杂化效应。在费米能级附近,O-2p态电子局域效应的贡献明显,对于改善氧化石墨烯纳米带的半导体发光效应起到了主要作用。  相似文献   

14.
The experimentally observed metal-to-insulator transition in hydrogenated graphene is numerically confirmed for actual sized graphene samples and realistic impurity concentrations. The eigenstates of our tight-binding model with substitutional disorder corroborate the formation of electron-hole?puddles with characteristic length scales comparable to the ones found in experiments. The puddles cause charge inhomogeneities and tend to suppress Anderson localization. Even though, monitoring the charge carrier quantum dynamics and performing a finite-size scaling of the local density of states distribution, we find strong evidence for the existence of localized states in graphene nanoribbons with short-range but also correlated long-range disorder.  相似文献   

15.
By using first-principles calculations and nonequilibrium Green’s function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties of molecular junctions can be modulated by doped atoms. Negative differential resistance (NDR) behaviour can be observed in a certain bias region, when crossed graphene nanoribbons are doped with nitrogen atoms at the shoulder, but it cannot be observed for pristine crossed graphene nanoribbons at low biases. A mechanism for the negative differential resistance behaviour is suggested.  相似文献   

16.
Through the Green's function formalism and tight-binding Hamiltonian model calculations, the temperature dependent electronic thermal conductivity (TC) for different diameters of zigzag carbon nanotubes and their corresponding unzipped armchair graphene nanoribbons is calculated. All functional temperature dependencies bear crossovers, for which, at higher temperatures, nanotubes have a slightly higher TC than their derived nanoribbons, while below that crossover, both systems exhibit a significant coincidence over a moderate range of lower temperatures. Noticeably, TC decreases with increasing the width or diameter of the corresponding systems. Also, at low temperatures TC is proportional to the density of states around the Fermi level, and thus increasing for metal or semiconductors of narrower gap cases.  相似文献   

17.
基于第一性原理计算,在石墨烷纳米条带阵列中找到类似于石墨烯纳米条带阵列的两种近自由电子态. 研究了电子掺杂对这些近自由电子态的影响,发现有可能通过掺杂打开一条真空中的输运通道.  相似文献   

18.
鲍志刚  陈元平  欧阳滔  杨凯科  钟建新 《物理学报》2011,60(2):28103-028103
利用非平衡格林函数方法研究了由半无限长扶手椅型和锯齿型边界石墨纳米带连接而成的L型石墨纳米结的热输运性质.结果表明,L型石墨纳米结的热导依赖于L型石墨纳米结的夹角和石墨纳米带的宽度.在L型石墨纳米结的夹角从30°增加到90°再增加到150°过程中,其热导显著增大.夹角为90°的L型石墨纳米结的热导随着扶手椅型纳米带宽度增加时,在低温区热导随着宽度的增大而降低,在高温区热导随宽度的增大而升高.对于夹角为150°的L型石墨纳米结,其热导无论是在低温区还是在高温区都随着锯齿型纳米带宽度的增加而降低.利用声子透射谱对这些热输运现象进行了合理的解释.研究结果阐明了不同L型石墨纳米结中的热输运机理,为设计基于石墨纳米结的热输运器件提供了重要的物理模型和理论依据. 关键词: 石墨纳米结 热输运 热导  相似文献   

19.
Electronic energy band structure of deformed armchair graphene nanoribbons with bond alternation is studied by the tight-binding approximation. In the presence of bond alternation, all armchair graphene nanoribbons become semiconducting with small band gap opened at center of the Brillouin zone. Under tensional strain, armchair graphene nanoribbons can become metallic at the critical values of deformation and we can control the band gap of nanoribbon by its strain.  相似文献   

20.
双空位缺陷石墨纳米带的电子结构和输运性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
欧阳方平  徐慧  林峰 《物理学报》2009,58(6):4132-4136
基于第一原理电子结构和输运性质计算,研究了585双空位拓扑缺陷对锯齿(zigzag)型石墨纳米带(具有椅型(armchair)边)电子结构和输运性质的影响.研究发现,585双空位缺陷的存在使得锯齿型石墨纳米带的能隙增大,并在能隙中出现了一条局域于缺陷处的缺陷态能带,双空位缺陷的取向也影响其能带结构.另外,585双空位缺陷对能隙较小的锯齿型石墨纳米带输运性质的影响较大,而对能隙较大的锯齿型石墨纳米带影响很小,缺陷取向并不显著影响纳米带的输运性质. 关键词: 石墨纳米带 585空位缺陷 电子结构 输运性质  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号