首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 846 毫秒
1.
In a ferromagnetic metal layer, the coupled charge and spin diffusion equations are obtained in the presence of both Rashba spin-orbit interaction and magnetism. The misalignment between the magnetization and the nonequilibrium spin density induced by the Rashba field gives rise to Rashba spin torque acting on the ferromagnetic order parameter. In a general form, we find that the Rashba torque consists of both in-plane and out-of-plane components, i.e., T=T(perpendicular)y^×m^+T(parallel)m^×(y^×m^). Numerical simulations on a two-dimensional nanowire consider the impact of diffusion on the Rashba torque and reveal a large enhancement to the ratio T(parallel)/T(perpendicular) for thin wires. Our theory provides an explanation for the mechanism driving the magnetization switching in a single ferromagnet as observed in the recent experiments.  相似文献   

2.
We have studied the Zeeman splitting in ballistic hole quantum wires formed in a (311)A quantum well by surface gate confinement. Transport measurements clearly show lifting of the spin degeneracy and crossings of the subbands when an in-plane magnetic field B is applied parallel to the wire. When B is oriented perpendicular to the wire, no spin splitting is discernible up to B = 8.8 T. The observed large Zeeman splitting anisotropy in our hole quantum wires demonstrates the importance of quantum confinement for spin splitting in nanostructures with strong spin-orbit coupling.  相似文献   

3.
Co/Pt multilayers with perpendicular magnetic anisotropy exhibit an exchange bias when covered with an IrMn layer. The exchange bias field, which is about 7 mT for 3 Co/Pt bilayer repetitions and a Co layer thickness of 5 Å, can be increased up to 16.5 mT by the insertion of a thin Pt layer at the Co/IrMn interface. The interfacial magnetic anisotropy of the Co/IrMn interface (KSCo/IrMn =-0.09 mJ/m2) favours in-plane magnetization and tends to tilt the Co spins away from the film normal. Dynamical measurements of the magnetization reversal process reveal that both thermally activated spin reversal in the IrMn layer and domain wall nucleation in the Co/Pt multilayer influence the interfacial spin structure and therefore the strength of the perpendicular exchange bias field.  相似文献   

4.
《Current Applied Physics》2014,14(3):516-520
In this article, we employ the semiclassical Monte Carlo approach to study the spin polarized electron transport in single layer graphene channel. The Monte Carlo method can treat non-equilibrium carrier transport and effects of external electric and magnetic fields on carrier transport can be incorporated in the formalism. Graphene is the ideal material for spintronics application due to very low Spin Orbit Interaction. Spin relaxation in graphene is caused by D'yakonov-Perel (DP) relaxation and Elliott-Yafet (EY) relaxation. We study effect of electron electron scattering, temperature, magnetic field and driving electric field on spin relaxation length in single layer graphene. We have considered injection polarization along z-direction which is perpendicular to the plane of graphene and the magnitude of ensemble averaged spin variation is studied along the x-direction which is the transport direction. This theoretical investigation is particularly important in order to identify the factors responsible for experimentally observed spin relaxation length in graphene.  相似文献   

5.
0.7 Structure and zero bias anomaly in ballistic hole quantum wires   总被引:1,自引:0,他引:1  
We study the anomalous conductance plateau around G=0.7(2e2/h) and the zero bias anomaly in ballistic hole quantum wires with respect to in-plane magnetic fields applied parallel B parallel and perpendicular B perpendicular to the quantum wire. As seen in electron quantum wires, the magnetic fields shift the 0.7 structure down to G=0.5(2e2/h) and simultaneously quench the zero bias anomaly. However, these effects are strongly dependent on the orientation of the magnetic field, owing to the highly anisotropic effective Landé g-factor g* in hole quantum wires. Our results highlight the fundamental role that spin plays in both the 0.7 structure and zero bias anomaly.  相似文献   

6.
We report on transport measurements of the insulating state that forms at the charge neutrality point of graphene in a magnetic field. Using both conventional two-terminal measurements, sensitive to bulk and edge conductance, and Corbino measurements, sensitive only to the bulk conductance, we observed a vanishing conductance with increasing magnetic fields. By examining the resistance changes of this insulating state with varying perpendicular and in-plane fields, we probe the spin-active components of the excitations in total fields of up to 45?T. Our results indicate that the ν=0 quantum Hall state in single layer graphene is not spin-polarized.  相似文献   

7.
We investigate the influence of external electric fields on the spins of a ballistic nanowire in terms of variations of the Rashba parameter and modification of the confinement potential. For a weak Rashba effect, the spins along the confinement direction in a given subband nearly assume full quantization. In the presence of a perpendicular magnetic field, the state of quantization can be manipulated using a transverse electric. This process requires modifications in the spin textures. If an in-plane magnetic field is applied, spins suffer rigid displacement to one edge of the wire and their expectation value becomes independent of the transverse electric field.  相似文献   

8.
In this article we study the effect of external magnetic field and electric field on spin transport in bilayer armchair graphene nanoribbons (GNR) by employing semiclassical Monte Carlo approach. We include D'yakonov-Perel' (DP) relaxation due to structural inversion asymmetry (Rashba spin-orbit coupling) and Elliott-Yafet (EY) relaxation to model spin dephasing. In the model we neglect the effect of local magnetic moments due to adatoms and vacancies. We have considered injection polarization along z-direction perpendicular to the plane of graphene and the magnitude of ensemble averaged spin variation is studied along the x-direction which is the transport direction. To the best of our knowledge there has been no theoretical investigation of the effects of external magnetic field on spin transport in graphene nanoribbons. This theoretical investigation is important in order to identify the factors responsible for experimentally observed spin relaxation length in graphene GNRs.  相似文献   

9.
We use neutron diffraction to probe the magnetization components of a crystal of Mn12 single-molecule magnets. Each of these molecules behaves, at low temperatures, as a nanomagnet with spin S = 10 and strong anisotropy along the crystallographic c axis. The application of a magnetic field H(perpendicular) perpendicular to c induces quantum tunneling between opposite spin orientations, enabling the spins to attain thermal equilibrium. For T approximately < 0.9(1) K, this equilibrium state shows spontaneous magnetization, indicating the onset of ferromagnetism. These long-range magnetic correlations nearly disappear for mu0H(perpendicular) approximately > 5.5 T, possibly suggesting the existence of a quantum critical point.  相似文献   

10.
Electrical spin injection from Fe into AlxGa1-xAs quantum well heterostructures is demonstrated in small (<500 Oe) in-plane magnetic fields. The measurement is sensitive only to the component of the spin that precesses about the internal magnetic field in the semiconductor. This field is much larger than the applied field and depends strongly on the injection current density. Details of the observed hysteresis in the spin injection signal are reproduced in a model that incorporates the magnetocrystalline anisotropy of the epitaxial Fe film, spin relaxation in the semiconductor, and the dynamic polarization of nuclei by the injected spins.  相似文献   

11.
Spin-echo experiments are reported for 3He-4He solutions under extremely high B/T conditions, B=14.75 T and T>or=1.73 mK. The 3He concentration x(3) was adjusted close to the value x(c) approximately 3.8% at which the spin-rotation parameter muM0 vanishes. In this way the transverse and longitudinal spin-diffusion coefficients D( perpendicular ),D( parallel ) were measured while keeping |muM(0)|<1. It is found that the temperature dependence of D( perpendicular ) deviates strongly from 1/T(2), with anisotropy temperature T(a)=4.26(+0.18)(-0.44) mK. This value is close to the theoretical prediction for dilute solutions and suggests that spin current relaxation remains finite as the temperature tends to zero.  相似文献   

12.
We have measured magnetotransport at half-filled high Landau levels in a quantum well with two occupied electric subbands. We find resistivities that are isotropic in perpendicular magnetic field but become strongly anisotropic at nu = 9/2 and 11/2 on tilting the field. The anisotropy appears at an in-plane field, B(ip) approximately 2.5 T, with the easy-current direction parallel to B(ip) but rotates by 90 degrees at B(ip) approximately 10 T and points now in the same direction as in single-subband samples. This complex behavior is in quantitative agreement with theoretical calculations based on a unidirectional charge density wave state model.  相似文献   

13.
《Physics letters. A》2014,378(18-19):1336-1340
Intrinsic electron spin relaxation due to the D'yakonov–Perel' mechanism is studied in monolayer Molybdenum Disulphide. An intervalley in-plane spin relaxation channel is revealed due to the opposite effective magnetic fields perpendicular to the monolayer Molybdenum Disulphide plane in the two valleys together with the intervalley electron–phonon scattering. The intervalley electron–phonon scattering is always in the weak scattering limit, which leads to a rapid decrease of the in-plane spin relaxation time with increasing temperature. A decrease of the in-plane spin relaxation time with the increase of the electron density is also shown.  相似文献   

14.
Inelastic spin relaxation and spin splitting epsilon(s) in lateral quantum dots are studied in the regime of strong in-plane magnetic field. Because of both the g-factor energy dependence and spin-orbit coupling, epsilon(s) demonstrates a substantial nonlinear magnetic field dependence similar to that observed by Hanson et al. [Phys. Rev. Lett. 91, 196802 (2003)]. It also varies with the in-plane orientation of the magnetic field due to crystalline anisotropy of the spin-orbit coupling. The spin relaxation rate is also anisotropic, the anisotropy increasing with the field. When the magnetic length is less than the "thickness" of the GaAs dot, the relaxation can be an order of magnitude faster for B ||[100] than for B || [110].  相似文献   

15.
A general theory of spin-lattice nuclear relaxation of spins I=1/2 caused by dipole-dipole couplings to quadrupole spins S1, characterized by a non-zero averaged (static) quadrupole coupling, is presented. In multispin systems containing quadrupolar and dipolar nuclei, transitions of spins 1/2 leading to their relaxation are associated through dipole-dipole couplings with certain transitions of quadrupole spins. The averaged quadrupole coupling attributes to the energy level structure of the quadrupole spin and influences in this manner relaxation processes of the spin 1/2. Typically, quadrupole spins exhibit also a complex multiexponential relaxation sensed by the dipolar spin as an additional modulation of the mutual dipole-dipole coupling. The proposed model includes both effects and is valid for an arbitrary magnetic field and an arbitrary quadrupole spin quantum number. The theory is applied to interpret fluorine relaxation profiles in LaF3 ionic crystals. The obtained results are compared with predictions of the 'classical' Solomon relaxation theory.  相似文献   

16.
Relaxation rates in the rotating frame (R1rho) and spin-spin relaxation rates (R2) were measured in articular cartilage at various orientations of cartilage layer to the static magnetic field (B0), at various spin locking field strengths and at two different static magnetic field strengths. It was found that R1rho in the deep radial zone depended on the orientation of specimens in the magnet and decreased with increasing the spin locking field strength. In contrast, R1rho values in the transitional zone were nearly independent of the specimen orientation and the spin locking field strength. Measurements of the same specimens at 2.95 and 7.05 T showed an increase of R1rho and most R2 values with increasing B0. The inverse B0 dependence of some R2 values was probably due to a multicomponent character of the transverse magnetization decay. The experiments revealed that the dominant T1rho and T2 relaxation mechanism at B0 < or = 3 T is a dipolar interaction due to slow anisotropic motion of water molecules in the collagen matrix. On average, the contribution of scalar relaxation due to rapid proton exchange in femoral head cartilage at 2.95 T is about 6% or less of the total R1rho at the spin locking field of 1000 Hz.  相似文献   

17.
We show that the spin degree of freedom plays a decisive role in the phase diagram of the nu(T)=1 bilayer electron system using an in-plane field B( parallel) in the regime of negligible tunneling. We observe that the phase boundary separating the quantum Hall and compressible states at d/l(B) = 1.90 for B(parallel) = 0 (d: interlayer distance, l(B): magnetic length) steadily shifts with B(parallel) before saturating at d/l(B) = 2.33 when the compressible state becomes fully polarized. Using a simple model for the energies of the competing phases, we can quantitatively describe our results. A new phase diagram as a function of d/l(B) and the Zeeman energy is established and its implications as to the nature of the phase transition are discussed.  相似文献   

18.
The planar Hall effect in a ferromagnetic conductor is considered within a simple two-liquid hydro-dynamic model. It is shown that, even in the simple case of an isotropic Fermi surface in the absence of thermal spread, the magnitude of the Hall effect is comparable to that in semiconductors because of the presence of two groups of conduction electrons with their spins parallel and perpendicular to the quantization axis, respectively. In addition to the planar Hall field, a spin flux parallel to this field arises, with the consequence that the extent of spin polarization of the conduction electrons varies along the Hall field direction (planar spin Hall effect).  相似文献   

19.
We consider a graphene bilayer in a constant magnetic field of arbitrary orientation, i.e., tilted with respect to the graphene plane. In the low energy approximation to the tight-binding model with Peierls substitution, we find the Landau level spectrum analytically in terms of spheroidal functions and the respective eigenvalues. We compare our result to the perpendicular and purely in-plane field cases. In the limit of perpendicular field we reproduce the known equidistant spectrum for Landau levels. In the opposite limit of large in-plane field this spectrum becomes two-fold degenerate, which is a consequence of Dirac point splitting induced by the in-plane field.  相似文献   

20.
This Letter theoretically discusses quasiparticle states and nuclear spin relaxation rates T1-1 in the quasi-one-dimensional superconductor (TMTSF)2PF6 under a magnetic field applied parallel to the conduction chains. We study the effects of Josephson-type vortices on T1(-1) by solving the Bogoliubov-de Gennes equation for p-, d- or f-wave pairing interactions. In the presence of line nodes in pairing functions, T1(-1) is proportional to T in sufficiently low temperatures because quasiparticles induced by vortices at the Fermi energy relax spins. We also try to identify the pairing symmetry of (TMTSF)2PF6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号