首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In the study of the heat transfer in the Boltzmann theory, the basic problem is to construct solutions to the following steady problem: $$v \cdot \nabla _{x}F =\frac{1}{{\rm K}_{\rm n}}Q(F,F),\qquad (x,v)\in \Omega \times \mathbf{R}^{3}, \quad \quad (0.1) $$ v · ? x F = 1 K n Q ( F , F ) , ( x , v ) ∈ Ω × R 3 , ( 0.1 ) $$F(x,v)|_{n(x)\cdot v<0} = \mu _{\theta}\int_{n(x) \cdot v^{\prime}>0}F(x,v^{\prime})(n(x)\cdot v^{\prime})dv^{\prime},\quad x \in\partial \Omega,\quad \quad (0.2) $$ F ( x , v ) | n ( x ) · v < 0 = μ θ ∫ n ( x ) · v ′ > 0 F ( x , v ′ ) ( n ( x ) · v ′ ) d v ′ , x ∈ ? Ω , ( 0.2 ) where Ω is a bounded domain in ${\mathbf{R}^{d}, 1 \leq d \leq 3}$ R d , 1 ≤ d ≤ 3 , Kn is the Knudsen number and ${\mu _{\theta}=\frac{1}{2\pi \theta ^{2}(x)} {\rm exp} [-\frac{|v|^{2}}{2\theta (x)}]}$ μ θ = 1 2 π θ 2 ( x ) exp [ - | v | 2 2 θ ( x ) ] is a Maxwellian with non-constant(non-isothermal) wall temperature θ(x). Based on new constructive coercivity estimates for both steady and dynamic cases, for ${|\theta -\theta_{0}|\leq \delta \ll 1}$ | θ - θ 0 | ≤ δ ? 1 and any fixed value of Kn, we construct a unique non-negative solution F s to (0.1) and (0.2), continuous away from the grazing set and exponentially asymptotically stable. This solution is a genuine non-equilibrium stationary solution differing from a local equilibrium Maxwellian. As an application of our results we establish the expansion ${F_s=\mu_{\theta_0}+\delta F_{1}+O(\delta ^{2})}$ F s = μ θ 0 + δ F 1 + O ( δ 2 ) and we prove that, if the Fourier law holds, the temperature contribution associated to F 1 must be linear, in the slab geometry.  相似文献   

2.
We study the radiative and semileptonic B decays involving a spin-J resonant $K_{J}^{(*)}$ with parity (?1) J for $K_{J}^{*}$ and (?1) J+1 for K J in the final state. Using large energy effective theory (LEET) techniques, we formulate $B\to K_{J}^{(*)}$ transition form factors in the large recoil region in terms of two independent LEET functions $\zeta_{\perp}^{K_{J}^{(*)}}$ and $\zeta_{\parallel}^{K_{J}^{(*)}}$ , the values of which at zero momentum transfer are estimated in the BSW model. According to the QCD counting rules, $\zeta_{\perp,\parallel}^{K_{J}^{(*)}}$ exhibit a dipole dependence in q 2. We predict the decay rates for $B\to K_{J}^{(*)}\gamma$ , $B\to K_{J}^{(*)}\ell^{+}\ell^{-}$ and $B\to K_{J}^{(*)}\nu \bar{\nu}$ . The branching fractions for these decays with higher K-resonances in the final state are suppressed due to the smaller phase spaces and the smaller values of $\zeta^{K_{J}^{(*)}}_{\perp,\parallel}$ . Furthermore, if the spin of $K_{J}^{(*)}$ becomes larger, the branching fractions will be further suppressed due to the smaller Clebsch–Gordan coefficients defined by the polarization tensors of the $K_{J}^{(*)}$ . We also calculate the forward–backward asymmetry of the $B\to K_{J}^{(*)}\ell^{+}\ell^{-}$ decay, for which the zero is highly insensitive to the K-resonances in the LEET parametrization.  相似文献   

3.
The cross section of the quasi-elastic reactions \(\bar v_\mu p \to \mu ^ + \Lambda (\Sigma ^0 )\) in the energy range 5–100 GeV is determined from Fermilab 15′ bubble chamber antineutrino data. TheQ 2 analysis of quasi-elastic Λ events yieldsM A=1.0±0.3 GeV/c2 for the axial mass value. With zero µΛ K 0 events observed, the 90% confidence level upper limit \(\sigma (\bar v_\mu p \to \mu ^ + \Lambda {\rm K}^0 )< 2.0 \cdot 10^{ - 40} cm^2 \) is obtained. At the same time, we found that the cross section of reaction \(\bar v_\mu p \to \mu ^ + \Lambda {\rm K}^0 + m\pi ^0 \) is equal to \(\left( {3.9\begin{array}{*{20}c} { + 1.6} \\ { - 1.3} \\ \end{array} } \right) \cdot 10^{ - 40} cm^2 \) .  相似文献   

4.
The average of the moments for event shapes in e ?+? e??→hadrons within the context of next-to-leading order (NLO) perturbative QCD prediction in dispersive model is studied. Moments used in this article are $\langle {1-T}\rangle$ , $\langle \rho\rangle$ , $\langle {B_{\rm T}}\rangle$ and $\langle {B_{\rm W} }\rangle$ . We extract α s, the coupling constant in perturbative theory and α 0 in the non-perturbative theory using the dispersive model. By fitting the experimental data, the values of $\alpha_{\rm s} ({M_{\rm Z^0} })=0.1171\pm 0.00229$ and $\alpha_0 \left( {\mu_{\rm I} =2\,{\rm GeV}} \right)=0.5068\pm 0.0440$ are found. Our results are consistent with the above model. Our results are also consistent with those obtained from other experiments at different energies. All these features are explained in this paper.  相似文献   

5.
The abundances of FeII and FeIII environments within green rusts one, GR1s, that intercalate carbonate, oxalate and methanoate (formate) anions are found from Mössbauer spectra for compositions corresponding to [Fe $^{\rm II}_{6}$ Fe $^{\rm III}_{2}$ (OH)16]2?+??[CO $_{3}^{2-}$ ?5H2O]2???, [Fe $^{\rm II}_{4}$ Fe $^{\rm III}_{2}$ (OH)12]2?+??[CO $_{3}^{2-}$ ?3H2O]2???, [Fe $^{\rm II}_{6}$ Fe $^{\rm III}_{2}$ (OH)16]2?+??[C2O $_{4}^{2-}$ ?4H2O]2??? and [Fe $^{\rm II}_{5}$ Fe $^{\rm III}_{2}$ (OH)14]2?+??[2HCOO????3H2O]2???. These formulae correspond to orders α, β and γ where cation distances are (2 × a 0), ( $\surd 3$ × a 0) or a mixture of both leading to (7 × a 0), where ratio x = {[FeIII]/[Fetotal]} = 1/4, 1/3 and 2/7, respectively. Anion distributions within interlayers are also devised and long-range orders determined accordingly.  相似文献   

6.
7.
The symmetric algebra ${S(\mathfrak{g})}$ over a Lie algebra ${\mathfrak{g}}$ has the structure of a Poisson algebra. Assume ${\mathfrak{g}}$ is complex semisimple. Then results of Fomenko–Mischenko (translation of invariants) and Tarasov construct a polynomial subalgebra ${{\mathcal {H}} = {\mathbb C}[q_1,\ldots,q_b]}$ of ${S(\mathfrak{g})}$ which is maximally Poisson commutative. Here b is the dimension of a Borel subalgebra of ${\mathfrak{g}}$ . Let G be the adjoint group of ${\mathfrak{g}}$ and let ? = rank ${\mathfrak{g}}$ . Using the Killing form, identify ${\mathfrak{g}}$ with its dual so that any G-orbit O in ${\mathfrak{g}}$ has the structure (KKS) of a symplectic manifold and ${S(\mathfrak{g})}$ can be identified with the affine algebra of ${\mathfrak{g}}$ . An element ${x\in \mathfrak{g}}$ will be called strongly regular if ${\{({\rm d}q_i)_x\},\,i=1,\ldots,b}$ , are linearly independent. Then the set ${\mathfrak{g}^{\rm{sreg}}}$ of all strongly regular elements is Zariski open and dense in ${\mathfrak{g}}$ and also ${\mathfrak{g}^{\rm{sreg}}\subset \mathfrak{g}^{\rm{ reg}}}$ where ${\mathfrak{g}^{\rm{reg}}}$ is the set of all regular elements in ${\mathfrak{g}}$ . A Hessenberg variety is the b-dimensional affine plane in ${\mathfrak{g}}$ , obtained by translating a Borel subalgebra by a suitable principal nilpotent element. Such a variety was introduced in Kostant (Am J Math 85:327–404, 1963). Defining Hess to be a particular Hessenberg variety, Tarasov has shown that ${{\rm{Hess}}\subset \mathfrak{g}^{\rm{sreg}}}$ . Let R be the set of all regular G-orbits in ${\mathfrak{g}}$ . Thus if ${O\in R}$ , then O is a symplectic manifold of dimension 2n where n = b ? ?. For any ${O\in R}$ let ${O^{\rm{sreg}} = \mathfrak{g}^{\rm{sreg}} \cap O}$ . One shows that O sreg is Zariski open and dense in O so that O sreg is again a symplectic manifold of dimension 2n. For any ${O\in R}$ let ${{\rm{Hess}}(O) = {\rm{Hess}}\cap O}$ . One proves that Hess(O) is a Lagrangian submanifold of O sreg and that $${\rm{Hess}} = \sqcup_{O\in R}{\rm{Hess}}(O).$$ The main result of this paper is to show that there exists simultaneously over all ${O\in R}$ , an explicit polarization (i.e., a “fibration” by Lagrangian submanifolds) of O sreg which makes O sreg simulate, in some sense, the cotangent bundle of Hess(O).  相似文献   

8.
In this paper we study soliton-like solutions of the variable coefficients, the subcritical gKdV equation $$u_t + (u_{xx} -\lambda u + a(\varepsilon x) u^m )_x =0,\quad {\rm in} \quad \mathbb{R}_t\times\mathbb{R}_x, \quad m=2,3\,\, { \rm and }\,\, 4,$$ with ${\lambda\geq 0, a(\cdot ) \in (1,2)}$ a strictly increasing, positive and asymptotically flat potential, and ${\varepsilon}$ small enough. In previous works (Mu?oz in Anal PDE 4:573?C638, 2011; On the soliton dynamics under slowly varying medium for generalized KdV equations: refraction vs. reflection, SIAM J. Math. Anal. 44(1):1?C60, 2012) the existence of a pure, global in time, soliton u(t) of the above equation was proved, satisfying $$\lim_{t\to -\infty}\|u(t) - Q_1(\cdot -(1-\lambda)t) \|_{H^1(\mathbb{R})} =0,\quad 0\leq \lambda<1,$$ provided ${\varepsilon}$ is small enough. Here R(t, x) := Q c (x ? (c ? ??)t) is the soliton of R t +? (R xx ??? R + R m ) x =?0. In addition, there exists ${\tilde \lambda \in (0,1)}$ such that, for all 0?<??? <?1 with ${\lambda\neq \tilde \lambda}$ , the solution u(t) satisfies $$\sup_{t\gg \frac{1}{\varepsilon}}\|u(t) - \kappa(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}\lesssim \varepsilon^{1/2}.$$ Here ${{\rho'(t) \sim (c_\infty(\lambda) -\lambda)}}$ , with ${{\kappa(\lambda)=2^{-1/(m-1)}}}$ and ${{c_\infty(\lambda)>\lambda}}$ in the case ${0<\lambda<\tilde\lambda}$ (refraction), and ${\kappa(\lambda) =1}$ and c ??(??)?<??? in the case ${\tilde \lambda<\lambda<1}$ (reflection). In this paper we improve our preceding results by proving that the soliton is far from being pure as t ?? +???. Indeed, we give a lower bound on the defect induced by the potential a(·), for all ${{0<\lambda<1, \lambda\neq \tilde \lambda}}$ . More precisely, one has $$\liminf_{t\to +\infty}\| u(t) - \kappa_m(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}>rsim \varepsilon^{1 +\delta},$$ for any ${{\delta>0}}$ fixed. This bound clarifies the existence of a dispersive tail and the difference with the standard solitons of the constant coefficients, gKdV equation.  相似文献   

9.
DIPTIMOY GHOSH 《Pramana》2012,79(4):895-898
A comprehensive study of the impact of new-physics operators with different Lorentz structures on decays involving the b ?? s ?? ?+? ?? ? transition is performed. The effects of new vector?Caxial vector (VA), scalar?Cpseudoscalar (SP) and tensor (T) interactions on the differential branching ratios, forward?Cbackward asymmetries (A FB??s), and direct CP asymmetries of ${\bar B}_{\rm s}^0 \to \mu^+ \mu^-$ , ${\bar B}_{\rm d}^0 \to$ $ X_{\rm s} \mu^+ \mu^-$ , ${\bar B}_{\rm s}^0 \to \mu^+ \mu^- \gamma$ , ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ , and ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ are examined. In ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ , we also explore the longitudinal polarization fraction f L and the angular asymmetries $A_{\rm T}^{(2)}$ and A LT, the direct CP asymmetries in them, as well as the triple-product CP asymmetries $A_{\rm T}^{\rm (im)}$ and $A^{\rm (im)}_{\rm LT}$ . While the new VA operators can significantly enhance most of the observables beyond the Standard Model predictions, the SP and T operators can do this only for A FB in ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ .  相似文献   

10.
We report on the p T dependence of nuclear modification factors (R CP) for K S 0 , ??, ?? and the $\bar NK_S^0 $ ratios at mid-rapidity from Au+Au collisions at $\sqrt {s_{NN} } $ = 39, 11.5 and 7.7 GeV. At $\sqrt {s_{NN} } $ = 39 GeV, the R CP data show a baryon/meson separation at intermediate p T and a suppression for K S 0 for p T up to 4.5 GeV/c; the $\bar \Lambda K_S^0 $ shows baryon enhancement in the most central collisions. However, at $\sqrt {s_{NN} } $ = 11.5 and 7.7 GeV, R CP shows less baryon/meson separation and $\bar NK_S^0 $ shows almost no baryon enhancement. These observations indicate that the matter created in Au+Au collisions at $\sqrt {s_{NN} } $ = 11.5 or 7.7 GeV might be distinct from that created at $\sqrt {s_{NN} } $ = 39 GeV.  相似文献   

11.
Continuing studies into an all-diode laser-based 3.3 μm difference frequency generation cavity ring-down spectroscopy system are presented. Light from a 1,560 nm diode laser, amplified by an erbium-doped fibre amplifier, was mixed with 1,064 nm diode laser radiation in a bulk periodically poled lithium niobate crystal to generate 16 μW of mid-IR light at 3,346 nm with a conversion efficiency of $0.05\,\%\,{\text{W}}^{-1}\,{\text{cm}}^{-1}$ . This radiation was coupled into a 77 cm long linear cavity with average mirror reflectivities of 0.9996, and a measured baseline ring-down time of $6.07\pm 0.03\,\upmu{\rm s}$ . The potential of such a spectrometer was illustrated by investigating the $P(3)$ transition in the fundamental $\nu_{3}(F_{2})$ band of ${\text{CH}}_4$ both in a 7.5 ppmv calibrated mixture of ${\text{CH}}_4$ in air and in breath samples from methane and non-methane producers under conditions where the minimum detectable absorption coefficient ( $\alpha_{\rm min}$ ) was $2.8 \times 10^{-8}\,{\rm cm}^{-1}$ over 6 s using a ring-down time acquisition rate of 20 Hz. Allan variance measurements indicated an optimum $\alpha_{\rm min}$ of $2.9\times 10^{-9}\,{\rm cm}^{-1}$ over 44 s.  相似文献   

12.
The rapidity distributions of inclusive \(e^ + e^ - \to h\bar h + \cdot \cdot \cdot\) of PEP and DESY experiments are analyzed in terms of the covariant partition temperatureT p model. The estimates ofT p * in the fireball system are comparable to the conventional temperature, the energy dependence follows approximately Stefan's law, the radius of the specific volume ralative to the energy density being ~1.18 fm. In the c.m.s. of collision, \(T_p = AW^a (W = \sqrt s in GeV)\) witha=0.60±0.05 andA=0.256±0.006, it is found \(T_p \cong {W \mathord{\left/ {\vphantom {W {\tfrac{3}{2}\left\langle {n_ \pm } \right\rangle }}} \right. \kern-0em} {\tfrac{3}{2}\left\langle {n_ \pm } \right\rangle }}\) . These properties hold also for \(\bar pp\) collision, but not forpp→π?+...  相似文献   

13.
This paper is concerned with d = 2 dimensional lattice field models with action ${V(\nabla\phi(\cdot))}$ , where ${V : \mathbf{R}^d \rightarrow \mathbf{R}}$ is a uniformly convex function. The fluctuations of the variable ${\phi(0) - \phi(x)}$ are studied for large |x| via the generating function given by ${g(x, \mu) = \ln \langle e^{\mu(\phi(0) - \phi(x))}\rangle_{A}}$ . In two dimensions ${g'' (x, \mu) = \partial^2g(x, \mu)/\partial\mu^2}$ is proportional to ${\ln\vert x\vert}$ . The main result of this paper is a bound on ${g''' (x, \mu) = \partial^3 g(x, \mu)/\partial \mu^3}$ which is uniform in ${\vert x \vert}$ for a class of convex V. The proof uses integration by parts following Helffer–Sjöstrand and Witten, and relies on estimates of singular integral operators on weighted Hilbert spaces.  相似文献   

14.
We prove that AB site percolation occurs on the line graph of the square lattice when $p \in (1 - \sqrt {1 - p_c } ,\sqrt {1 - p_c } )$ , where p c is the critical probability for site percolation in $\mathbb{Z}^2$ . Also, we prove that AB bond percolation does not occur on $\mathbb{Z}^2$ for p = $\frac{1}{2}$ .  相似文献   

15.
We prove that self-avoiding walk on ${\mathbb{Z}^d}$ is sub-ballistic in any dimension d ≥ 2. That is, writing ${\| u \|}$ for the Euclidean norm of ${u \in \mathbb{Z}^d}$ , and ${\mathsf{P_{SAW}}_n}$ for the uniform measure on self-avoiding walks ${\gamma : \{0, \ldots, n\} \to \mathbb{Z}^d}$ for which γ 0 = 0, we show that, for each v > 0, there exists ${\varepsilon > 0}$ such that, for each ${n \in \mathbb{N}, \mathsf{P_{SAW}}_n \big( {\rm max}\big\{\| \gamma_k \| : 0 \leq k \leq n\big\} \geq vn \big) \leq e^{-\varepsilon n}}$ .  相似文献   

16.
It is shown that for each finite number N of Dirac measures ${\delta_{s_n}}$ supported at points ${s_n \in {\mathbb R}^3}$ with given amplitudes ${a_n \in {\mathbb R} \backslash\{0\}}$ there exists a unique real-valued function ${u \in C^{0, 1}({\mathbb R}^3)}$ , vanishing at infinity, which distributionally solves the quasi-linear elliptic partial differential equation of divergence form ${-\nabla \cdot ( \nabla{u}/ \sqrt{1-| \nabla{u} |^2}) = 4 \pi \sum_{n=1}^N a_n \delta_{s_n}}$ . Moreover, ${u \in C^{\omega}({\mathbb R}^3\backslash \{s_n\}_{n=1}^N)}$ . The result can be interpreted in at least two ways: (a) for any number N of point charges of arbitrary magnitude and sign at prescribed locations s n in three-dimensional Euclidean space there exists a unique electrostatic field which satisfies the Maxwell-Born-Infeld field equations smoothly away from the point charges and vanishes as |s| ?? ??; (b) for any number N of integral mean curvatures assigned to locations ${s_n \in {\mathbb R}^3 \subset{\mathbb R}^{1, 3}}$ there exists a unique asymptotically flat, almost everywhere space-like maximal slice with point defects of Minkowski spacetime ${{\mathbb R}^{1, 3}}$ , having lightcone singularities over the s n but being smooth otherwise, and whose height function vanishes as |s| ?? ??. No struts between the point singularities ever occur.  相似文献   

17.
We find new operator formulas for converting Q?P and P?Q ordering to Weyl ordering, where Q and P are the coordinate and momentum operator. In this way we reveal the essence of operators’ Weyl ordering scheme, e.g., Weyl ordered operator polynomial ${_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}}$ , $$\begin{aligned} {_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}} =&\sum_{l=0}^{\min (m,n)} \biggl( \frac{-i\hbar }{2} \biggr) ^{l}l!\binom{m}{l}\binom{n}{l}Q^{m-l}P^{n-l} \\ =& \biggl( \frac{\hbar }{2} \biggr) ^{ ( m+n ) /2}i^{n}H_{m,n} \biggl( \frac{\sqrt{2}Q}{\sqrt{\hbar }},\frac{-i\sqrt{2}P}{\sqrt{\hbar }} \biggr) \bigg|_{Q_{\mathrm{before}}P} \end{aligned}$$ where ${}_{:}^{:}$ ${}_{:}^{:}$ denotes the Weyl ordering symbol, and H m,n is the two-variable Hermite polynomial. This helps us to know the Weyl ordering more intuitively.  相似文献   

18.
Results of the search for rare radiative decay modes of the ?-meson performed with the Neutral Detector at the VEPP-2M collider are presented. For the first time upper limits for the branching ratios of the following decay modes have been placed at 90% confidence level: $$\begin{gathered} B(\phi \to \eta '\gamma )< 4 \cdot 10^{ - 4} , \hfill \\ B(\phi \to \pi ^0 \pi ^0 \gamma )< 10^{ - 3} , \hfill \\ B(\phi \to f_0 (975)\gamma )< 2 \cdot 10^{ - 3} , \hfill \\ B(\phi \to H\gamma )< 3 \cdot 10^{ - 4} , \hfill \\ \end{gathered} $$ whereH is a scalar (Higgs) boson with a mass 600 MeV<m H <1000 MeV, the real measurement isB(φH γB(H→2π0)<0.8·10-4, the quoted result is model dependent, as explained in the text, $$\begin{gathered} B(\phi \to a\gamma ) \cdot B(a \to e^ + e^ - )< 5 \cdot 10^{ - 5} , \hfill \\ B(\phi \to a\gamma ) \cdot B(a \to \gamma \gamma )< 2 \cdot 10^{ - 3} , \hfill \\ \end{gathered} $$ wherea is a particle with a low mass and a short lifetime, $$B(\phi \to a\gamma )< 0.7 \cdot 10^{ - 5} ,$$ wherea is a particle with a low mass not observed in the detector.  相似文献   

19.
We present numerical calculations of the production cross section of a heavy Z?? resonance in hadron?Chadron collisions with subsequent decay into top?Cantitop pairs. In particular, we consider the leptophobic topcolor Z?? discussed under Model IV of hep-ph/9911288, which has predicted cross sections large enough to be experimentally accessible at the Fermilab Tevatron and the Large Hadron Collider at CERN. This article presents an updated calculation valid for the Tevatron and all proposed LHC collision energies. Cross sections are presented for various Z?? widths, in $p\bar{p}$ collisions at $\sqrt{s}=2\mbox{~TeV}$ , and in pp collisions at $\sqrt{s}=7, 8, 10 \mbox{ and } 14\mbox{~TeV}$ .  相似文献   

20.
We present measurement of elliptic flow, v 2, for charged and identified particles at midrapidity in Au+Au collisions at $\sqrt {s_{NN} } $ = 7.7?C39 GeV. We compare the inclusive charged hadron v 2 to those from transport model calculations, such as the UrQMD model, AMPT default model and AMPT string-melting model. We discuss the energy dependence of the difference in v 2 between particles and anti-particles. The v 2 of ? meson is observed to be systematically lower than other particles in Au+Au collisions at $\sqrt {s_{NN} } $ = 11.5 GeV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号