首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chalcogenide glasses are interesting materials due to their infrared transmitting properties and photo induced effects exhibited by them. Thin films with thickness of 3000 Å of the glasses Se75S25−xCdx with x=6, 8 and 10 at% prepared by melt quench technique were evaporated by thermal evaporation onto glass substrates under a vacuum of 10−6 Torr. The optical constants (absorption coefficient, refractive index and extinction coefficient) of as-prepared and annealed films have been studied as a function of photon energy in the wave length region 400-1000 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been found that the absorption coefficient and optical band gap increase with increasing annealing temperatures. The refractive index (n) and the extinction coefficient (k) were observed to decrease with increasing annealing temperature.  相似文献   

2.
High-k HfOxNy thin films with different nitrogen-incorporation content have been fabricated on Si (1 0 0) substrate by means of radio-frequency reactive sputtering method. Analyses from X-ray diffraction (XRD) and atomic force microscopic have indicated that the increase of the crystallization temperature of HfO2 thin films and the decrease of the roughness root-mean-square value of HfO2 thin films due to the incorporation of nitrogen. Based on a parameterized Tauc-Lorentz (TL) dispersion model, the optical properties of the HfOxNy thin films related to different nitrogen-incorporation content are systematically investigated by spectroscopic ellipsometer. Increase in the refractive index and the extinction coefficient and reduction in band gap with increase of nitrogen-incorporation content are discussed in detail.  相似文献   

3.
In this work, silicon suboxide (SiOx) thin films were deposited using a RF magnetron sputtering system. A thin layer of gold (Au) with a thickness of about 10 nm was sputtered onto the surface of the deposited SiOx films prior to the thermal annealing process at 400 °C, 600 °C, 800 °C and 1000 °C. The optical and structural properties of the samples were studied using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and optical transmission and reflection spectroscopy. SEM analyses demonstrated that the samples annealed at different temperatures produced different Au particle sizes and shapes. SiOx nanowires were found in the sample annealed at 1000 °C. Au particles induce the crystallinity of SiOx thin films in the post-thermal annealing process at different temperatures. These annealed samples produced silicon nanocrystallites with sizes of less than 4 nm, and the Au nanocrystallite sizes were in the range of 7-23 nm. With increased annealing temperature, the bond angle of the Si-O bond increased and the optical energy gap of the thin films decreased. The appearance of broad surface plasmon resonance absorption peaks in the region of 590-740 nm was observed due to the inclusion of Au particles in the samples. The results show that the position and intensity of the surface plasmon resonance peaks can be greatly influenced by the size, shape and distribution of Au particles.  相似文献   

4.
Bulk Ge20Se80−xTlx (x ranging from 0 to 15 at%) chalcogenide glasses were prepared by conventional melt quenching technique. Thin films of these compositions were prepared by thermal evaporation, on glass and Si wafer substrates at a base pressure of 10−6 Torr. X-ray diffraction studies were performed to investigate the structure of the thin films. The absence of any sharp peaks in the X-ray diffractogram confirms that the films are amorphous in nature. The optical constants (absorption coefficient, optical band gap, extinction coefficient and refractive index) of Ge20Se80−xTlx thin films are determined by absorption and reflectance measurements in a wavelength range of 400-900 nm. In order to determine the optical gap, the absorption spectra of films with different Tl contents were analyzed. The absorption data revealed the existence of allowed indirect transitions. The optical band gap showed a sharp decrease from 2.06 to 1.79 eV as the Tl content increased from 0% to 15%. It has been found that the values of absorption coefficient and refractive index increase while the extinction coefficient decreases with increase in Tl content in the Ge-Se system. These results are interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. DC electrical conductivity of Ge20Se80−xTlx thin films was carried out in a temperature range 293-393 K. The electrical activation energy of these films was determined by investigating the temperature dependence of dc conductivity. A decrease in the electrical activation energy from 0.91 to 0.55 eV was observed as the Tl content was increased up to 15 at% in Ge20Se80−xTlx system. On the basis of pre-exponential factor, it is suggested that the conduction is due to thermally assisted tunneling of the carriers in the localized states near the band edges.  相似文献   

5.
Specular reflectance FTIR study of carbon monoxide adsorbed on platinum is performed on Pt/SiO2/Au layered structures prepared by deposition of thin films on silicon (1 0 0) wafers. The layered structures consist of 5 nm thick platinum films over SiO2 films of varying thicknesses with 50 nm thick reflecting gold films underneath. Due to optical interference effects, the reflectance of each of these structures varies with the incident infrared wavelength and goes through a minimum at a wavelength that depends on the thickness of the SiO2 layer. The decrease in the reflectance R causes an effective increase in the ΔR/R value resulting in a large increase in the infrared absorption band intensity of linearly-adsorbed CO. The peak height changes with changing the SiO2 thickness in the structures and is greatest for the sample which has lowest reflectance near the absorption wavelength of CO (∼2100 cm−1). This improvement in the ratio of FTIR signal to background reflectance can be very useful for probing low surface area model catalytic surfaces at atmospheric pressures and under reaction conditions. A spectrum of CO adsorbed on nanofabricated Pt nanowire catalysts on TiO2 support is also shown as an example of the sensitivity enhancement on layered structures.  相似文献   

6.
Spark-processed Si (sp-Si) exhibits blue, green and red photoluminescence at around 385, 525 and 650 nm, depending on the wavelength of excitation. Its optical absorption spectrum reveals bands peaked approximately at 245, 277, 325 and 389 nm. The centers where absorption takes place were modeled as Si and silica clusters in an amorphous SiOxNy matrix using various embedding schemes. Geometry optimizations were applied prior to calculations of the absorption spectra of the clusters. The measured absorption spectrum of sp-Si and calculated absorption spectra were compared. Best agreement is achieved for Si particles embedded in amorphous SiOxNy matrix. The importance of the various embedding schemes is discussed and conclusions for the centers of emission are established.  相似文献   

7.
Nitrogen-doped TiO2 thin films were prepared by pulsed laser deposition (PLD) by ablating metallic Ti target with pulses of 248 nm wavelength in reactive atmospheres of O2/N2 gas mixtures. The layers were characterized by UV-VIS spectrophotometry and variable angle spectroscopic ellipsometry with complementary profilometry for measuring the thickness of the films. Band gap and extinction coefficient values are presented for films deposited at different substrate temperatures and for varied N2 content of the gas mixture. The shown tendencies are correlated to nitrogen incorporation into the TiO2-xNx layers. It is shown that layers of significantly increased visible extinction coefficient with band gap energy as low as 2.89 eV can be obtained. A method is also presented how the spectroscopic ellipsometric data should be evaluated in order to result reliable band gap values.  相似文献   

8.
In the present work different optical properties of xTiO2-(60 − x)SiO2-40Na2O (wt%) optical glasses are determined. The characterization is done over a wide energy range, 0.41-6.2 eV. The refractive index and the extinction coefficient data are used to measure the absorption coefficient of the different glass compositions. Studying the UV-absorption edge, both direct and indirect allowed transitions with their optical energy gaps are carried out. In the same time, the Urbach energy is evaluated. From the extinction coefficient data, the Fermi energy of the glasses is calculated. The molar refraction, electronic polarizability and the optical basicity are obtained using the measured glass refractive indices.  相似文献   

9.
Hf1−xSixOy is an attractive candidate material for high-k dielectrics. We report in this work the deposition of ultra-thin Hf1−xSixOy films (0.1 ≤ x ≥ 0.6) on silicon substrate at 450 °C by UV-photo-induced chemical vapour deposition (UV-CVD) using 222 nm excimer lamps. Silicon(IV) and hafnium(IV) organic compounds were used as the precursors. Films from around 5 to 40 nm in thickness with refractive indices from 1.782 to 1.870 were grown. The deposition rate was found to be of 6 nm/min at a temperature of 450 °C. The physical, interfacial and electrical properties of hafnium silicate (Hf1−xSixOy) thin films were investigated by using X-ray photoelectron spectroscopy, ellipsometry, FT-IR, C-V and I-V measurements. XRD showed that they were basically amorphous, while Fourier transform infrared spectroscopy (FT-IR), clearly revealed Hf-O-Si absorption in the photo-CVD deposited Hf1−xSixOy films. Surface and interfacial properties were analysed by TEM and XPS. It is found that carbon content in the films deposited by UV-CVD is very low and it also decreases with increasing Si/(Si + Hf) ratio, as low as about 1 at.% at the Si/(Si + Hf) ratio of 60 at.%.  相似文献   

10.
Multilayered Ge nanocrystals embedded in SiOxGeNy films have been fabricated on Si substrate by a (Ge + SiO2)/SiOxGeNy superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO2 composite target and subsequent thermal annealing in N2 ambient at 750 °C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm−1, which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO2) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the ‘Z’ growth direction.  相似文献   

11.
Photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) measurements have been performed on HfSixOy and HfSixOyNz dielectric layers, which are potential candidates as high-k transistor gate dielectrics. The hafnium silicate layers, 3-4 nm thick, were formed by codepositing HfO2 and SiO2 (50%:50%) by MOCVD at 485 °C on a silicon substrate following an IMEC clean. Annealing the HfSixOy layer in a nitrogen atmosphere at 1000 °C resulted in an increase in the Si4+ chemical shift from 3.5 to 3.9 eV with respect to the Si0 peak. Annealing the hafnium silicate layer in a NH3 atmosphere at 800 °C resulted in the incorporation of 10% nitrogen and the decrease in the chemical shift between the Si4+ and the Si0 to 3.3 eV. The results suggest that the inclusion of nitrogen in the silicate layer restricts the tendency of the HfO2 and the SiO2 to segregate into separate phases during the annealing step. Synchrotron radiation valence band photoemission studies determined that the valence band offsets were of the order of 3 eV. X-ray absorption measurements show that the band gap of these layers is 4.6 eV and that the magnitude of the conduction band offset is as little as 0.5 eV.  相似文献   

12.
To use solar irradiation or interior lighting efficiently, we sought a photocatalyst with high reactivity under visible light. Nitrogen and carbon doping TiO2−xyNxCy films were obtained by heating the TiO2 gel in an ionized N2 gas and then were calcined at 500 °C. The TiO2−xyNxCy films have revealed an improvement over the TiO2 films under visible light (wavelength, 500 nm) in optical absorption and photocatalytic activity such as photodegradation of methyl orange. X-ray photoemission spectroscopy, infrared spectrum and UV-visible (UV-vis) spectroscopy were used to find the difference of two kinds of films. Nitrogen and carbon doped into substitutional sites of TiO2 has been proven to be indispensable for band-gap narrowing and photocatalytic activity.  相似文献   

13.
Hafnium oxynitride (HfOxNy) gate dielectric has been deposited on Si (1 0 0) by means of radio frequency (rf) reactive sputtering using directly a HfO2 target in N2/Ar ambient. The thermal stability and microstructural characteristics for the HfOxNy films have been investigated. XPS results confirmed that nitrogen was successfully incorporated into the HfO2 films. XRD analyses showed that the HfOxNy films remain amorphous after 800 °C annealing in N2 ambient. Meanwhile the HfOxNy films can also effectively suppress oxygen diffusion during high temperature annealing and prevent interface layer from forming between HfOxNy films and Si substrates. AFM measurements demonstrated that surface roughness of the HfOxNy films increase slightly as compared to those pure HfO2 films after post deposition annealing. By virtue of building reasonable model structure, the optical properties of the HfOxNy films have been discussed in detail.  相似文献   

14.
Ba(ZrxTi1−x)O3 (BZT) (x = 0.20 and 0.30) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrate by sol-gel method. X-ray diffraction patterns show that the thin films have a good crystallinity. Optical properties of the films in the wavelength range of 2.5-12 μm are studied by infrared spectroscopic ellipsometry (IRSE). The optical constants of the BZT thin films are determined by fitting the IRSE data using a classical dispersion formula. As the wavelength increases, the refractive index decreases, while the extinction coefficients increase. The effective static ionic charges are derived, which are smaller than that in a purely ionic material for the BZT thin films.  相似文献   

15.
FePt–SiNx–C films with high coercivity, (001) texture and small grain size were obtained by co-sputtering FePt, Si3N4 and C on TiN/CrRu/glass substrate at 380 °C. Without C doping, FePt–SiNx films with good perpendicular anisotropy and a single layer structure were obtained. However, the grain size was still too large and the grain isolation was poor. When C was doped into the FePt–SiNx films, the out-of-plane coercivity increased due to the decrease of the exchange coupling. In addition, the grain size of the FePt films decreased, and well-separated FePt grains with uniform size were formed. The microstructure of [FePt–SiNx 40 vol%]−20 vol% C films changed from a single layer structure to a multiple layer structure when the FePt thickness was increased from 4 to 10 nm. By optimizing the sputtering process, the [FePt (4 nm)–SiNx 40 vol%]−20 vol% C (001) film with coercivity higher than 21.5 kOe, a single layer structure, and small average FePt grain size of 5.6 nm was obtained, which makes it suitable for ultrahigh density perpendicular recording.  相似文献   

16.
Different compositions of GexAs10Te90−x (x=5, 10, 15, 20, and 25 at%) chalcogenide glasses were prepared by the usual melt quench technique. Amorphous GexAs10Te90−x thin films were deposited onto cleaned glass substrates using the thermal evaporation method. Transmission spectra, T(λ), of the films at normal incidence were measured in the wavelength range 400-2500 nm. A straightforward analysis proposed by Swanepoel based on the use of the maxima and minima of the interference fringes has been used to drive the film thickness, d, the complex index of refraction, n, and the extinction coefficient, k. It was found that, the addition of Ge content at the expense of Te atoms shifts the optical band gap to the short wavelength side (blue shift of the optical band gap) while the refractive index are found to decreases. The obtained results of the refractive index were discussed in terms of the electronic polarizability and the single-oscillator Wemple and DiDomenico model (WDD). The optical absorption is due to the allowed non-direct optical transitions. The observed increase in the optical band gap with the increase in Ge content was discussed in terms of the width of the tail states in the gap and the covalent bond approach.  相似文献   

17.
Optical properties of ternary chalcognide amorphous Ge10AsxSe(90−x) (with 10?x?25 at%) thin films prepared by thermal evaporation have been measured in visible and near-infrared spectral region. The straightforward analysis proposed by Swanepoel has been successfully employed, and it has allowed us to determine the average thickness , and the refractive index, n, of the films, with high accuracy. The refractive index, n and the average thickness has been determined from the upper and lower envelopes of the transmission spectra measured at normal incidence, in the spectral range 400-2500 nm. The absorption coefficient α, and therefore extinction coefficient k, have been determined from the transmission spectra in the strong-absorption region. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple-DiDomenico model, and the optical absorption edge is described using the ‘nondirect transition’ model proposed by Tauc. Likewise, the optical energy gap is derived from Tauc's extrapolation. The relationship between the optical gap and chemical composition in Ge10AsxSe(90−x) amorphous system is discussed in terms of the average heat of atomization Hs and average coordination number Nc. Finally, the chemical bond approach has been also applied successfully to interpret the decrease of the glass optical gap with increasing As content.  相似文献   

18.
The general equation Tove = L cos  θ ln(Rexp/R0 + 1) for the thickness measurement of thin oxide films by X-ray photoelectron spectroscopy (XPS) was applied to a HfO2/SiO2/Si(1 0 0) as a thin hetero-oxide film system with an interfacial oxide layer. The contribution of the thick interfacial SiO2 layer to the thickness of the HfO2 overlayer was counterbalanced by multiplying the ratio between the intensity of Si4+ from a thick SiO2 film and that of Si0 from a Si(1 0 0) substrate to the intensity of Si4+ from the HfO2/SiO2/Si(1 0 0) film. With this approximation, the thickness levels of the HfO2 overlayers showed a small standard deviation of 0.03 nm in a series of HfO2 (2 nm)/SiO2 (2-6 nm)/Si(1 0 0) films. Mutual calibration with XPS and transmission electron microscopy (TEM) was used to verify the thickness of HfO2 overlayers in a series of HfO2 (1-4 nm)/SiO2 (3 nm)/Si(1 0 0) films. From the linear relation between the thickness values derived from XPS and TEM, the effective attenuation length of the photoelectrons and the thickness of the HfO2 overlayer could be determined.  相似文献   

19.
Thin films of silicon oxynitride have largely replaced pure silicon oxide films as gate and tunnel oxide films in modern technology due to their superior properties in terms of efficiency as boron barrier, resistance to electrical stress and high dielectric strength. A single chamber system for plasma enhanced chemical vapor deposition was employed to deposit different films of SiOxNyHz with 0.85 < x < 1.91. All films were previously characterized by Rutherford back-scattering and infrared spectroscopy to determine the stoichiometry and the presence of various bonding configurations of constituent atoms. We used X-ray reflectivity to determine the electron density profile across the depth, and we showed that the top layer is densified. Moreover, grazing incidence small-angle X-ray scattering was used to study inhomogeneities (clustering) in the films, and it is shown that plate-like inhomogeneities exist in the top and sphere-like particles at the bottom part of the film. Their shape and size depend on the stoichiometry of the films.  相似文献   

20.
Third order nonlinear optical properties of amorphous Znx–Sy–Se100−xy chalcogenide films have been investigated using single beam transmission z-scan technique at 1064 nm of Nd:YAG laser. Measurement of optical properties of amorphous Znx–Sy–Se100−xy chalcogenide films prepared by thermal evaporation technique has been made. X-ray diffraction patterns of chalcogenide films confirm the amorphous nature. Optical band gap (Eg) has been estimated using Tauc's plot method from transmission spectra that is found to decrease with increase in content due to valence band broadening and band tailing the system. Nonlinear refractive index (n2), nonlinear absorption coefficient (β) and third order nonlinear susceptibility (χ3) of chalcogenide films have been estimated. Self-focusing effect has been observed in closed aperture and reverse saturable absorption in open aperture scheme. Limiting threshold and dynamic range have been calculated from optical limiting studies. The increase in nonlinearity with increase in Zn content has been observed that is understood to be due to decrease in band gap on Zn doping. High nonlinearity makes these films a potential candidate for waveguides, fibers and two photon absorption in optical limiters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号