首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene‐based pipette tip solid‐phase extraction was combined with ultra‐high performance liquid chromatography and tandem mass spectrometry for the determination of carbamate pesticide residues in fruit juice samples. Four milligrams of graphene was used as sorbent material to pack a 1000 μL pipette tip for the extraction of pirimicarb, propoxur, isoprocarb, fenobucarb, and diethofencarb from 3 mL of fruit juice sample. The whole extraction process was finished in 12 min, and the volume of eluent used was only 1.5 mL. Under the optimized conditions, good linear relationship (R > 0.999) and lower limits of detection (0.0022–0.033 ng/mL) were achieved. The recoveries at three spiked levels ranged from 80.90 to 124.60% with relative standard deviations less than 4.88%. Compared with commercially available sorbents including propylsulfonic acid silica, graphitized carbon black, and C18, graphene was superior in extraction efficiency. The proposed method is simple, rapid, sensitive, selective, and solvent saving.  相似文献   

2.
Switchable‐hydrophilicity solvent liquid‐liquid microextraction and dispersive liquid‐liquid microextraction were compared for the extraction of piperine from Piper nigrum L. prior to its analysis by using high‐performance liquid chromatography with UV detection. Under optimum conditions, limits of detection and quantitation were found as 0.2–0.6 and 0.7–2.0 μg/mg with the two methods, respectively. Calibration graphs showed good linearity with coefficients of determination (R2) higher than 0.9962 and percentage relative standard deviations lower than 6.8%. Both methods were efficiently used for the extraction of piperine from black and white pepper samples from different origins and percentage relative recoveries ranged between 90.0 and 106.0%. The results showed that switchable‐hydrophilicity solvent liquid‐liquid microextraction is a better alternative to dispersive liquid‐liquid microextraction for the routine analysis of piperine in food samples. A novel scaled‐up dispersive liquid‐liquid microextraction method was also proposed for the isolation of piperine providing a yield of 102.9 ± 4.9% and purity higher than 98.0% as revealed by NMR spectroscopy.  相似文献   

3.
A novel dispersive solid‐phase extraction combined with vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high‐performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean‐up of the extract was conducted by dispersive solid‐phase extraction using activated carbon as the sorbent. The vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1‐undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2–500 ng/g with correlation coefficients (r) of 0.9993–0.9999. The limits of detection were in the range of 0.08–0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices.  相似文献   

4.
A simple and sensitive method for the simultaneous determination of eight parabens in human plasma and urine samples was developed. The samples were preconcentrated using dispersive liquid–liquid microextraction based on the solidification of floating organic drops and determined by high‐performance liquid chromatography with ultraviolet detection. The influence of variables affecting the extraction efficiency was investigated and optimized using Placket–Burman design and Box–Behnken design. The optimized values were: 58 μL of 1‐decanol (as extraction solvent), 0.65 mL methanol (as disperser solvent), 1.5% w/v NaCl in 5.0 mL of sample solution, pH 10.6, and 4.0 min centrifugation at 4000 rpm. The extract was injected into the high‐performance liquid chromatography system for analysis. Under the optimum conditions, the linear ranges for eight parabens in plasma and urine were 1.0–1000 ng/mL, with correlation coefficients above 0.994. The limit of detection was 0.2–0.4 and 0.1–0.4 ng/mL for plasma and urine samples, respectively. Relative recoveries were between 80.3 and 110.7%, while relative standard deviations were less than 5.4%. Finally, the method was applied to analyze the parabens in 98 patients of primary breast cancer. Results showed that parabens existed widely, at least one paraben detected in 96.9% (95/98) of plasma samples and 98.0% (96/98) of urine samples.  相似文献   

5.
Vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion‐methyl, Triazophos, Phoxim and Chlorpyrifos‐methyl in water samples. 1‐Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 μL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 μg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1–500 μg/L for all the compounds. The relative standard deviations were in the range of 1.62–2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples.  相似文献   

6.
For the first time, the low‐density solvent‐based vortex‐assisted surfactant‐enhanced emulsification liquid–liquid microextraction, followed by GC‐flame photometric detection has been developed for the determination of eight organophosphorus pesticides in aqueous samples. A small volume of organic extraction solvent (toluene) was dispersed into the aqueous samples by the assistance of surfactant and vortex agitator. The extraction was performed in a special disposable polyethylene pipette, allowing using the reagents with lower density than water as extraction solvents. The influence parameters were systemically investigated and optimized: toluene (30 μL) and Triton X‐100 (0.2 mmol/L) were used as the extraction solvent and the surfactant, respectively, and the extraction was performed for 1 min under room temperature without adding sodium chloride. Under the optimum conditions, the validation parameters such as the RSD (n = 6; 2.1–11.3%), LOD (0.005 and 0.05 μg/L), and linear range (0.1–50.0 μg/L with correlation coefficients (0.9958–0.9992) showed the method was satisfying. The proposed method has been successfully applied to the determination of the organophosphorus pesticides in real samples with recoveries between 82.8 and 100.2%.  相似文献   

7.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

8.
In this study, a simple and low‐organic‐solvent‐consuming method combining an acetonitrile‐partitioning extraction procedure followed by “quick, easy, cheap, effective, rugged and safe” cleanup with ionic‐liquid‐based dispersive liquid–liquid microextraction and high‐performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic‐liquid‐based dispersive liquid–liquid microextraction was performed using the ionic liquid 1‐hexyl‐3‐methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid–liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples.  相似文献   

9.
An analytical method is presented for the determination of paraben preservatives in semisolid cream samples by matrix solid‐phase dispersion combined with supramolecular solvent‐based microextraction. Due to the oily and sticky nature of the sample matrix, parabens were first extracted from the samples by matrix solid‐phase dispersion using silica as sorbent material with a clean‐up performed with tetrahydrofuran in the elution step. The eluate (500 μL), 1‐decanol (120 μL), and water (4.4 mL) were then mixed in a polyethylene pipette to form supramolecular solvent. Finally, the analytes in the supramolecular solvent were separated and determined by liquid chromatography with ultraviolet detection. Under optimal extraction conditions, the extraction recoveries of the studied compounds were obtained in the range of 63–83%. The limits of detection for the analytes were between 0.03 and 0.04 μg/g. The precision of the method varied between 4.0–6.7 (intraday) and 6.2–7.9% (interday). Finally, the optimized procedure was applied to the determination of the target preservatives in a variety of cream samples (diaper rash, skin allergy, face and hand moisturizing) with satisfactory recoveries (86–102%).  相似文献   

10.
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid–liquid microextraction method was proposed for the extraction and concentration of 17‐α‐estradiol, 17‐β‐estradiol‐benzoate, and quinestrol in environmental water samples by high‐performance liquid chromatography with fluorescence detection. 1‐Hexyl‐3‐methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion‐pairing and salting‐out agent NH4PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1‐hexyl‐3‐methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid–liquid microextraction was widened.  相似文献   

11.
A green extractant, hydrophobic deep eutectic solvent was first introduced for extraction of tetracycline, oxytetracycline, and chlortetracycline from environmental water samples prior to high‐performance liquid chromatography determination. Deep eutectic solvents consist of methyltrioctylammonium chloride and various medium‐chain alcohols/acids, and are easy in preparation, low cost and toxicity, desirably biodegradable, and biocompatible. The overall time required for sample preparation was 6 min and the volume of organic solvent used for extraction was only 400 µL. Under the optimized extraction condition, the present method yielded low limit of detection (0.5–2.0 ng/mL), acceptable precision (relative standard deviations < 9.7%), good linearity from 2.0 to 500 ng/mL (r2 ≥ 0.9991). This optimized procedure was applied for determination of tetracyclines in different water samples with desirable spiked recovery ranged from 77.5 to 87.6%. There is, therefore, a great potential to further expand application of the method for investigation of other ultra‐trace analyte(s) in environmental matrixes.  相似文献   

12.
A rapid, effective method applying vortex‐assisted liquid–liquid microextraction before ultra‐high performance liquid chromatography with mass spectrometry and evaporative light scattering detection was developed for the analysis of four cucurbitane triterpenoids (momordicoside L, momordicoside K, momordicoside F2, and 3β,7β,25‐trihydroxy cucurbita‐5,23(E )‐dien‐19‐al) in bitter melon juices. Variables affecting the extraction efficiency including different extraction solvents, volume of extraction solvent, salt amount, acid condition, vortex speed and time were optimized thoroughly. Under the optimum conditions, precision was determined by the intra‐ and inter‐day tests in a range of 1.1–5.7% and 2.9–4.0% (RSD), respectively, with recoveries between 95.7 and 106.1%. The calibration curves showed good linearity with square correlation coefficient of 0.9936–0.9991 (evaporative light scattering detection) and 0.9858–0.9989 (MS). The detection limits ranged from 0.8–1.9 ng/mL (MS) to 3–10 ng/mL (evaporative light scattering detection) for these compounds. Enrichment factors of four target compounds were between 27 and 63 times. The proposed method was also used to determine the apparent solvent/water partition coefficients of analytes within the range of 53–120. The developed method can effectively enrich and quantify cucurbitane triterpenoids from bitter melon drinks.  相似文献   

13.
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid‐phase extraction combined with ultrasound‐assisted dispersive liquid–liquid microextraction before ultra‐high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid‐phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid–liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0–400 (tebuconazole, diniconazole, and hexaconazole) and 4.0–800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5–1.1 and 1.8–4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained.  相似文献   

14.
A simple and sensitive method for determination of three aconitum alkaloids and their metabolites in human plasma was developed using matrix solid‐phase dispersion combined with vortex‐assisted dispersive liquid–liquid microextraction and high‐performance liquid chromatography with diode array detection. The plasma sample was directly purified by matrix solid‐phase dispersion and the eluate obtained was concentrated and further clarified by vortex‐assisted dispersive liquid–liquid microextraction. Some important parameters affecting the extraction efficiency, such as type and amount of dispersing sorbent, type and volume of elution solvent, type and volume of extraction solvent, salt concentration as well as sample solution pH, were investigated in detail. Under optimal conditions, the proposed method has good repeatability and reproducibility with intraday and interday relative standard deviations lower than 5.44 and 5.75%, respectively. The recoveries of the aconitum alkaloids ranged from 73.81 to 101.82%, and the detection limits were achieved within the range of 1.6–2.1 ng/mL. The proposed method offered the advantages of good applicability, sensitivity, simplicity, and feasibility, which makes it suitable for the determination of trace amounts of aconitum alkaloids in human plasma samples.  相似文献   

15.
A sensitive and rapid method based on alcohol‐assisted dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography for the determination of fluoxetine in human plasma and urine samples was developed. The effects of six parameters on the extraction recovery were investigated and optimized utilizing Plackett–Burman design and Box–Benken design, respectively. According to the Plackett–Burman design results, the volume of disperser solvent, extraction time, and stirring speed had no effect on the recovery of fluoxetine. The optimized conditions included a mixture of 172 μL of 1‐octanol as extraction solvent and 400 μL of methanol as disperser solvent, pH of 11.3 and 0% w/v of salt in the sample solution. Replicating the experiment in optimized condition for five times, gave the average extraction recoveries equal to 90.15%. The detection limit of fluoxetine in human plasma was obtained 3 ng/mL, and the linearity was in the range of 10–1200 ng/mL. The corresponding values for human urine were 4.2 ng/mL with the linearity range from 10 to 2000 ng/mL. Relative standard deviations for intra and inter day extraction of fluoxetine were less than 7% in five measurements. The developed method was successfully applied for the determination of fluoxetine in human plasma and urine samples.  相似文献   

16.
A low‐cost and simple cooling‐assisted headspace liquid‐phase microextraction device for the extraction and determination of 2,6,6‐trimethyl‐1,3 cyclohexadiene‐1‐carboxaldehyde (safranal) in Saffron samples, using volatile organic solvents, was fabricated and evaluated. The main part of the cooling‐assisted headspace liquid‐phase microextraction system was a cooling capsule, with a Teflon microcup to hold the extracting organic solvent, which is able to directly cool down the extraction phase while the sample matrix is simultaneously heated. Different experimental factors such as type of organic extraction solvent, sample temperature, extraction solvent temperature, and extraction time were optimized. The optimal conditions were obtained as: extraction solvent, methanol (10 μL); extraction temperature, 60°C; extraction solvent temperature, 0°C; and extraction time, 20 min. Good linearity of the calibration curve (R2 = 0.995) was obtained in the concentration range of 0.01–50.0 μg/mL. The limit of detection was 0.001 μg/mL. The relative standard deviation for 1.0 μg/mL of safranal was 10.7% (n = 6). The proposed cooling‐assisted headspace liquid‐phase microextraction device was coupled (off‐line) to high‐performance liquid chromatography and used for the determination of safranal in Saffron samples. Reasonable agreement was observed between the results of the cooling‐assisted headspace liquid‐phase microextraction high‐performance liquid chromatography method and those obtained by a validated ultrasound‐assisted solvent extraction procedure.  相似文献   

17.
Matrix solid‐phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High‐performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid‐phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid‐phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion‐pairing agent (NH4PF6), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3–13.4 μg/kg.  相似文献   

18.
A novel liquid–liquid microextraction method, namely, solvent‐vapor‐assisted liquid–liquid microextraction for the determination of dimethyl phthalate, diethyl phthalate, dibutyl phthalate and bis(2‐ethylhexyl) phthalate in the aqueous samples using gas chromatography with mass spectrometry was developed. In the proposed method, extracting solvent was heated, and solvent vapor as the extracting phase was injected into the sample solution. As a result of the low temperature of the sample solution and higher density of the extracting phase than the aqueous medium, solvent vapor was condensed and an organic‐phase drop formed in the bottom of sample tube. Because of the gas status of the extracting solvent, the surface area between the extracting solvent and the aqueous sample was remarkably high. Under the optimized conditions, tetrachloride carbon was used as an extracting solvent. The method shows high coefficient of determination (R 2) values in the range of 0.5–200 and 1.0–200 ng/mL for the target analytes. Enrichment factors and limits of detection for the studied phthalates are obtained in the ranges of 2800–3000 and 0.15–0.3 ng/mL, respectively. Recoveries and relative standard deviations were in the range of 80.0–100.0 and 2.2–7.8%, respectively. The proposed method successfully used for analysis of several aqueous samples.  相似文献   

19.
Chloroanisoles, particularly 2,4,6‐trichloroanisole, are commonly identified as major taste and odor compounds in water. In the present study, a simple and efficient method was established for the simultaneous determination of chloroanisoles and the precursor 2,4,6‐trichlorophenol in water by using low‐density‐solvent‐based simultaneous dispersive liquid–liquid microextraction and derivatization followed by gas chromatography with electron capture detection. 2,4‐Dichloroanisole, 2,6‐dichloroanisole, 2,4,6‐trichloroanisole, 2,3,4‐trichloroanisole, and 2,3,6‐trichloroanisole were the chloroanisoles evaluated. Several important parameters of the extraction‐derivatization procedures, including the types and volumes of extraction solvent and disperser solvent, concentrations of derivatization agent and base, salt addition, extraction‐derivatization time, and temperature were optimized. Under the optimized conditions (80 μL of isooctane as extraction solvent, 500 μL of methanol as disperser solvent, 60 μL of acetic anhydride as derivatization agent, 0.75% of Na2CO3 addition w/v, extraction‐derivatization temperature of 25°C, without salt addition), a good linearity of the calibration curve was observed by the square of correlation coefficients (R2) ranging from 0.9936 to 0.9992. Repeatability and reproducibility of the method were < 4.5% and <7.3%, respectively. Recovery rates ranged from 85.2 to 101.4%, and limits of detection ranged from 3.0 to 8.7 ng/L. The proposed method was applied successfully for the determination of chloroanisoles and 2,4,6‐trichlorophenol in water samples.  相似文献   

20.
A novel manual‐shaking‐ and ultrasound‐assisted surfactant‐enhanced emulsification microextraction method was developed for the determination of three fungicides in juice samples. In this method, the ionic liquid, 1‐ethyl‐3‐methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, instead of a volatile organic solvent was used as the extraction solvent. The surfactant, NP‐10, was used as an emulsifier to enhance the dispersion of the water‐immiscible ionic liquid into an aqueous phase, which accelerated the mass transfer of the analytes. Organic dispersive solvent typically required in common dispersive liquid–liquid microextraction methods was not necessary. In addition, manual shaking for 15 s before ultrasound to preliminarily mix the extraction solvent and the aqueous sample could greatly shorten the time for dispersing the ionic liquid into aqueous solution by ultrasound irradiation. Several experimental parameters affecting the extraction efficiency, including type and volume of extraction solvent, type and concentration of surfactant, extraction time, and pH, were optimized. Under the optimized conditions, good linearity with the correlation coefficients (γ) higher than 0.9986 and high sensitivity with the limit of detection ranging from 0.4 to 1.6 μg/L were obtained. The average recoveries ranged from 61.4 to 86.0% for spiked juice, with relative standard deviations from 1.8 to 9.7%. The proposed method was demonstrated to be a simple, fast, and efficient method for the analysis of the target fungicides in juice samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号