首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a new type of flame retardant (AF‐Fe) based on para‐aramid fiber (AF) which was modified with iron diethyl phosphinate was applied for thermoplastic polyurethane elastomer (TPU). The flame‐retardant properties of TPU were tested using cone calorimeter test, smoke density test, and thermogravimetric analysis/infrared spectrometry. The cone calorimeter test showed that AF‐Fe can greatly reduce the heat release rate, total heat release, smoke factor, and other parameters of TPU composites compared with the sample of TPU/AF. For example, the pHRR of the composite with 1.0 wt% AF‐Fe was reduced by 15.19% compared with the sample with the same content of pure AF. In addition, the smoke factor of TPU/AFFe3 was reduced by 50.52% and 15.63% compared with TPU0 and TPU/AF respectively. The results of smoke density test showed that the luminous flux of TPU/AFFe3 was increased by 79.26% compared with the sample of TPU/AF. The TG results revealed that the sample with TPU/AFFe3 had lower weight loss rate and higher char residue content at 700°C compared with the sample of TPU/AF.  相似文献   

2.
In this work, a novel nanocomposite series based on styrene‐butadiene rubber (SBR latex) and alpha‐zirconium phosphate(α‐ZrP) lamellar nanofillers is successfully prepared. The α‐ZrP lamellar filler is modified at the cation exchange capacity by γ‐aminopropyltrimethoxysilane and the filler surface modification is first discussed. A significant improvement of the mechanical properties is obtained by using the surface modified nanofillers. However, no modification of the gas barrier properties is observed. The impact of addition of bis(triethoxysilylpropyl)tetrasulfide (TESPT) as coupling agent in the system is discussed on the nanofiller dispersion state and on the filler–matrix interfacial bonding. Simultaneous use of modified nanofillers and TESPT coupling agent is found out with extraordinary reinforcing effects on both mechanical and gas barrier properties and the key factors at the origin of the improvement of these properties are identified. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1051–1059  相似文献   

3.
Multifunctional epoxy‐polydimethylsiloxane nanocomposite coatings with antifouling and anticorrosion characteristics have been developed via in situ polymerization method at different loading (1, 3, and 6.5 wt.%) of ZnO nanoparticles to cater marine applications. A detailed comparative analysis has been carried out between epoxy‐polydimethylsiloxane control (EPC) and ZnO‐reinforced coatings to determine the influence of ZnO loading on various properties. The incorporation of ZnO in EPC led to increase in root mean square (RMS) roughness to 126.75 nm and improved hydrophobicity showing maximum contact angle of 123.5° with low surface energy of 19.75 mN/m of nanocomposite coating as compared with control coating. The differential scanning calorimetry (DSC) result indicated improved glass transition temperature of nanocomposite coatings with highest Tg obtained at 83.69°C in case of 1 wt.% loading of ZnO. The increase in hydrophobicity of the system was accompanied by upgraded anticorrosion performance exhibiting 98.8% corrosion inhibition efficiency (CIE) as compared with control coating and lower corrosion rate of 0.12 × 10?3 mm/year. The Taber abrasion resistance and pull‐off adhesion strength results indicated an increment of 34.7% and 150.7%, respectively, in case of nanocomposite coating as compared with the control coating. The hardness of nanocomposite coatings was also improved, and maximum hardness was found to be 65.75 MPa for nanocomposite coating with 1 wt.% of ZnO. Our study showed that the nanocomposite coating was efficient in inhibiting accumulation of marine bacteria and preventing biofouling for more than 8 months. The developed environment‐friendly and efficient nanocomposite material has a promising future as a high‐performance anticorrosive and antifouling coating for marine applications.  相似文献   

4.
《先进技术聚合物》2018,29(9):2545-2552
Although hexagonal boron nitride (h‐BN) has presented a potential prospect in polymer composite fields, undesirable interfacial interaction with polymer matrix that generates serious aggregation of nanomaterials has suppressed its enhancement effect. Moreover, the chemically inert surface of h‐BN also makes the commonly used approach that improves the interfacial interaction between nanofillers and polymeric matrix invalid. Herein, the functionalized modification of chemically inert h‐BN was successfully fabricated by the adsorption of cetyl‐trimethylammonium bromide, with electrostatic interactions. The obtained h‐BN (cetyl‐trimethylammonium bromide‐BN) was well characterized by systematic tests and then added into thermoplastic polyurethane (TPU) matrix. The inclusion of functionalized h‐BN can dramatically improve thermal stability, flame retardant, and mechanical properties of TPU composites. With the incorporation of as low as 4.0 wt% nanofillers, maximal value of heat release rate and total heat release of TPU were reduced by 57.5% and 17.8%, compared with those of pure TPU, respectively. Moreover, tensile strength of TPU composite with a loading of 2.0 wt% was increased by 79.3% in comparison with that of neat TPU. The facile functionalized approach of chemically inert h‐BN paves the way for promising applications of h‐BN in the development of flame retardant polymer materials.  相似文献   

5.
In the present study, montmorillonite (MMT) nanoclay and copper oxide (CuO) nanoparticles (NPs) reinforced polyvinylchloride (PVC) based flexible nanocomposite films were prepared via solvent casting technique. Using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA), the structural, morphological and thermal properties of PVC/MMT/CuO nanocomposite films with various loadings of CuO NPs and MMT were investigated. These studies suggested that by the addition of dual nanofillers in the polymer matrix some structural modifications occurred owing to the homogenous dispersion of MMT and CuO NPs within the PVC matrix. The TGA results reveal that the addition of CuO NPs and MMT considerably improved the thermal stability of the nanocomposites. The EMI shielding effectiveness (SE) of nanocomposites was examined in the X-band (8–12 GHz) and Ku-band (12–18 GHz) frequency regions. The EMI SE values were found to be −30 dB (X-band) and −35 dB (Ku-band) for nanocomposites containing 0.3 wt% of CuO NPs and 4.7 wt% of MMT respectively while the shielding was found to be absorption dominant. These results emphasize that PVC/MMT/CuO nanocomposite films can be used as a potential EMI shielding material.  相似文献   

6.
Amorphous poly(lactide) (PLA) and nanocomposite films were prepared from melt‐blending with precipitated calcium carbonate nanofillers (PCC). Nanocomposites based on uncoated PCC (PCC‐UT), stearic acid coated PCC (PCC‐S), and poly(ε‐caprolactone) coated PCC (PCC‐P) were investigated for an inorganic content fixed to 8 wt %. Using coated nanofillers allowed preserving both PLA average molar mass and thermal stability while enhancing the nanofiller dispersion state. Poly(ε‐caprolactone) was identified as the best coating for optimized morphology and thermal properties. Maxwell law accurately described the increase in oxygen barrier properties observed for the nanocomposites based on PCC‐S. A modified Maxwell law was proposed to take account of the additional increase in barrier properties evidenced for the PLA/PCC‐P nanocomposites and assigned to the particularly strong compatibility between PCL and PLA. Different annealing conditions were investigated to respectively study the impact of physical ageing and PLA crystallization on gas permeability. Different extents of physical ageing did not significantly modify the oxygen transport properties. However, a high permeability decrease was observed for the semicrystalline nanocomposites with respect to the amorphous reference PLA film. Finally, the gain in barrier properties was shown to result from both contribution of the nanofillers and the crystalline phase. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 649–658  相似文献   

7.
Polyamide and polystyrene particles were coated with titanium dioxide films by atomic layer deposition (ALD) and then melt‐compounded to form polymer nanocomposites. The rheological properties of the ALD‐created nanocomposite materials were characterized with a melt flow indexer, a melt flow spiral mould, and a rotational rheometer. The results suggest that the melt flow properties of polyamide nanocomposites were markedly better than those of pure polyamide and polystyrene nanocomposites. Such behavior was shown to originate in an uncontrollable decrease in the polyamide molecular weight, likely affected by a high thin‐film impurity content, as shown in gel permeation chromatography (GPC) and scanning electron microscope (SEM) equipped with an energy‐dispersive spectrometer. Transmission electron microscope image showed that a thin film grew on both studied polymer particles, and that subsequent melt‐compounding was successful, producing well dispersed ribbon‐like titanium dioxide with the titanium dioxide filler content ranging from 0.06 to 1.12 wt%. Even though we used nanofillers with a high aspect ratio, they had only a minor effect on the tensile and flexural properties of the polystyrene nanocomposites. The mechanical behavior of polyamide nanocomposites was more complex because of the molecular weight degradation. Our approach here to form polymeric nanocomposites is one way to tailor ceramic nanofillers and form homogenous polymer nanocomposites with minimal work‐related risks in handling powder form nanofillers. However, further research is needed to gauge the commercial potential of ALD‐created nanocomposite materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
At present, thermoplastic polyurethane (TPU) is widely used, but there are still many defects in fire safety, such as burning with heavy smoke and dripping. In this article, OS@MP was synthesized by modifying oyster shell (OS) powder with melamine polyphosphate (MP) and then served as fire‐safe agent for TPU. The fire performance of TPU composites were investigated using microscale combustion colorimeter (MCC), cone calorimeter test (CCT), smoke density test (SDT), and thermogravimetric analysis/Fourier transform infrared (TG‐FTIR) spectrum analysis. The MCC and CCT results revealed that OS@MP could reduce the fire hazards of TPU composites. The peak heat release rate (pHRR) of the sample with 10.0 wt% OS@MP decreased to 170.86 kW/m2 from 1772.37 kW/m2 for pure TPU. And, the SDT results showed that OS@MP could significantly reduce the smoke production of TPU composites. The TG‐FTIR also confirmed that the noncombustible gases (including CO2, ammonia, and water vapor) produced by OS@MP have played a reinforcing role in TPU composites as well as a char formed on the surface of composites, which could act as a barrier to prevent the heat and air, reinforce the fire safety of TPU.  相似文献   

9.
《先进技术聚合物》2018,29(5):1377-1384
In this work, thermoplastic polyurethane‐filled montmorillonite‐polypyrrole (TPU/Mt‐PPy) was prepared through melt mixing process for using in electromagnetic shielding applications. The effect of conducting filler content and type, sample thickness, and X‐band frequency range on the electromagnetic interference shielding effectiveness (EMI SE) and EMI attenuation mechanism was investigated. A comparative study of electrical and microwave absorption properties of TPU/Mt‐PPy nanocomposites and TPU/PPy blends was also reported. The total EMI SE average and electrical conductivity of all Mt‐PPy.Cl or Mt‐PPy.DBSA nanocomposites are higher than those found for TPU/PPy.Cl and TPU/PPy.DBSA blends. This behavior was attributed to the higher aspect ratio and better dispersion of the nanostructured Mt‐PPy when compared with neat PPy. Moreover, the presence of Mt‐PPy into TPU matrix increases absorption loss (SEA) mechanism, contributing to increase EMI SE. The total EMI SE values of nanocomposites containing 30 wt% of Mt‐PPy.DBSA with 2 and 5 mm thickness were approximately 16.6 and approximately 36.5 dB, respectively, corresponding to the total EMI of 98% (75% by absorption) and 99.9% (88% by absorption). These results highlight that the nanocomposites studied are promising materials for electromagnetic shielding applications.  相似文献   

10.
Emulsion‐based coatings and adhesives are in growing demand due to an increased awareness of health and safety issues arising from solvent‐based polymer manufacturing processes. However, emulsion‐based techniques often require additional development to achieve equal or better application performance compared to solvent‐based processes. The inclusion of nanoparticles in emulsion‐based coatings and adhesives can be considered as a promising means to enhance performance. This paper reviews the current progress on the synthesis of emulsion‐based nanocomposites for coating and adhesive applications and addresses the principles and techniques for nanoparticle dispersions and their inclusion into polymer latexes. The effects of nanoparticle shape and size on the enhancement of nanocomposite properties are also highlighted. Among the reinforcing nanoparticles such as nanoclays, carbon nanotubes, and cellulose nanocrystals (CNCs), CNCs are promising due to their abundance, nontoxicity, and accessible surface hydroxyl groups, which facilitate their compatibility with polymer latexes via physical and chemical treatments.  相似文献   

11.
首先采用溶液共混法制备出石墨烯-碳纳米管(G-CNT)/聚氨酯(TPU)复合材料,然后通过拉伸实验及扫描电子显微镜(SEM)表征来考察该材料的拉伸强度和微波自修复特性,并从力学及材料与微波之间的相互作用等角度对其拉伸强度增强和微波修复机理进行研究.结果表明:在拉伸强度方面,与单一的石墨烯或CNT增强TPU相比,G-CNT之间形成的协同效应使TPU拉伸强度得到进一步提高,当石墨烯和CNT的质量比为3∶1时,G-CNT/TPU抗拉强度较纯TPU提高了67%,较G/TPU提高了18%,较CNT/TPU提高了25%;在材料裂纹的微波修复方面,石墨烯和CNT之间的协同效应使TPU材料自修复效果得到有效提高,当石墨烯和CNT的质量比为3∶1时,G-CNT/TPU修复效果达到最高值117%.  相似文献   

12.
This paper deals with the thermal degradation and fire performance of silicone‐based coatings for protecting steel. In this study, the fire performance of silicone coatings as virgin or formulated materials is evaluated using two homemade fire testing methodologies: one similar to the “torch test” fire testing method and the other using a heat radiator test. It was shown that the performance of the silicone‐based coating used as thermal barrier can be improved incorporating a modifier (a mixture of polydimethylsiloxane and silica coated by a silane). In this case, silicone‐based coating swells and exhibits same fire performance as commercial intumescent coating at the torch test. It is shown that the incorporation of modifier in the silicone makes it to swell upon heating resulting in the formation of expanded material exhibiting low heat conductivity. Thermal degradation of the coating is also investigated: it occurs in three main steps leading to the formation of a tridimensional network characterized by the formation of Q4 structure at high temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
《先进技术聚合物》2018,29(1):61-68
Bio‐based nanocomposites of poly (butylene adipate‐co‐terephthalate) (PBAT)/silver oxide (Ag2O) were prepared by the composite film casting method using chloroform as the solvent. The prepared Ag2O at different ratios (1, 3, 5, 7, and 10 wt%) is incorporated in the PBAT. The PBAT nanocomposite films were subjected to structural, thermal, mechanical, barrier, and antimicrobial properties. The electron micrographs indicated uniform distribution of Ag2O in the PBAT matrix. However, the images indicated agglomeration of Ag2O particles at 10 wt% loading. The thermal stability of the nanocomposite films increased with Ag2O content. The tensile strength and elongation of the composite films were found to be higher than those of PBAT and increased with Ag2O content up to 7 wt%. The PBAT‐based nanocomposite films showed the lower oxygen and water vapor permeability when compared to the PBAT film. Antimicrobial studies were performed against two food pathogenic bacteria, namely, Klebsiella pneumonia and Staphylococcus aureus.  相似文献   

14.
The effects of Y2O3 on the microstructure, phase composition of the coatings, microhardness and wear resistance of cobalt‐based composite coatings prepared by laser cladding were investigated. The TA15 titanium alloy was selected as substrate which the cobalt‐based composite powder with different content of Y2O3 was cladded on. The microstructure of the coatings was observed by scanning electron microscope (SEM) and metallurgical microscope. The phase structure of the coatings was determined by X‐ray diffraction (XRD), and the microhardness and wear resistance of the coatings were measured by hardness tester and wear testing machine. The results show that the rare earth oxide Y2O3 can refine and purify the microstructure of the coatings, reduce the porosities and cracks and improve compactness of the coatings. Moreover the addition of Y2O3 improves the microhardness of the coatings and reduces the friction coefficient, thus improving the wear property of the coatings. And the wear resistance of the coating with Y2O3 has improved about 50 times; the highest value of microhardness in the coating is HV1181.1. And 0.8 wt% content of Y2O3 in the coating is the best choice for improving the microhardness and wear resistance of the coating. It is feasible to improve the microstructure and tribological properties of laser cladding coatings by adding of Y2O3. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A comparison of melamine salt of pentaerythritol phosphate (MPP), and a synergistic agents, iron–graphene (IG) was performed in thermoplastic polyurethane (TPU) by masterbatch‐melt blending on thermal and flame retardant properties. The flame retardant properties of TPU composites were characterized by limiting oxygen index (LOI), UL 94 and cone calorimeter test (CCT). The CCT results revealed that IG can significantly enhance flame retardant properties of MPP in TPU. The peak heat release rate of neat TPU and flame retardant TPU/MPP composites decreased from 2192.6 and 226.7 to 187.2 kW/m2 compared with that of TPU containing 0.25 wt% IG. The thermal stability and thermal decomposition of TPU composites were characterized by thermogravimetric analysis (TGA) and thermogravimetric/Fourier infrared spectrum analysis (TG‐IR). The results indicated IG and MPP can improve the thermal stability of TPU. The formation of thermal conductive network by IG can promote the decomposition of MPP into nonflammable melt, which can play the role of heat barrier and restrict the diffusion of fuels into combustion zone and access of oxygen to the unburned fuels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
《中国化学》2018,36(1):51-54
Antireflection surfaces and coatings have attracted considerable interests because they can maximize light transmittance of the substrates. In this work, zeolite antireflective (ZAR) coatings are prepared via layer‐by‐layer (LBL) assembly of MFI ‐type zeolite silicalite‐1 and polyelectrolyte. A micro‐ and macroporous hierarchical structure was obtained which contributes to the antireflective property of the zeolite coatings. The light transmittance of the coating on quartz can achieve as high as 99.3% at 650 nm. Furthermore, a superhydrophobic ZAR coating can be obtained by chemical modification with 1H,1H,2H,2H–perfluorooctyl‐triethoxysilane. This work demonstrates that zeolites are excellent candidates as high transparent superhydrophobic coatings.  相似文献   

17.
In this study, a suitable method is reported to produce reinforced antibacterial paper packaging using the antimicrobial triclosan (TC) and organically modified montmorillonite (OMMT) as “model” compounds. Direct incorporation of TC at a concentration of 1 wt% and OMMT at concentrations of 1, 4, 7, and 10 wt% into papers was performed via coating process, and the resulting materials were characterized by in vitro antimicrobial assays, thermogravimetric analysis, scanning electron microscopy, mechanical tests, and water vapor transmission rate determinations. It was demonstrated that the presence of 1% TC in the coated papers exhibited inhibitory effects against Staphylococcus aureus and Escherichia coli. It was also pointed out that increases of approximately 30% in the tensile strength of commercial paper are obtained by using the OMMT at a concentration of 1 wt%. Water barrier property and thermal stability of paper were also enhanced because of the coating process and the incorporation of OMMT. The results from this study demonstrate that OMMT has a great potential to be incorporated into coating formulations to obtain antibacterial‐coated papers with improved properties for various packaging applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A facile method is proposed to obtain microwave absorbing materials (MAMs), which possess strong microwave absorption properties in low‐frequency range. By simply mechanical mixing, the obtained Fe3O4–poly (3,4‐ethylenedioxythiophene) (PEDOT) hybrids exhibit more excellent microwave absorbing properties than that of Fe3O4 or PEDOT individually. The analysis on the microwave absorbing properties of the Fe3O4–PEDOT hybrids indicates that the excellent microwave absorbing properties are ascribed to several factors, like the dielectric loss, the interface polarization, eddy current effect, natural ferromagnetic resonance, and the impedance as well as the thickness of the coating. The Fe3O4–PEDOT hybrids with appropriate mass ratios of PEDOT to Fe3O4 (represented by (PEDOT)/(Fe3O4)) show superior microwave absorbing property at low frequency. When the thickness is 4 mm, the reflection loss of the sample reached ?15.8 dB at 3.2 GHz with (PEDOT)/(Fe3O4) of 3 and ?31.4 dB at 4.5 GHz with (PEDOT)/(Fe3O4) of 2, respectively. The obtained Fe3O4–PEDOT MAMs will have a promising application in the practical industry and commerce affairs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The quantitative analysis of zinc phosphate (ZnP) on the flame resistance of intumescent flame retardant coatings (IFRCs) is presented including cone calorimeter (CC) and pyrolysis kinetics, using aliphatic waterborne polyurethane (AWP) as the coating binder. The CC results show that an appropriate dosage (2 wt%) of ZnP in the AWP‐based coating constitutes an improved flame resistance, evidenced by the fire performance index increased from 0.41 to 0.71 seconds m2 kW?1, as well as the reduced fire growth index. The characterization analysis determines the dehydrated ZnP facilitates the formed amorphous char‐residue with a heat‐sink effect, leading to an increase in heat absorption, which climbs from the 253.00to 351.30 J·g?1. Besides, the pyrolysis kinetics verifies that the 3D Jander model (n = 2) mainly governs the whole pyrolysis process of pure coatings by the modified Coats‐Redfern integral method. The ZnP‐containing coating exerts an improved Eα corresponding to 95–200°C, which climbs from 24.96 to 35.80 kJ mol?1, leading to the formation of a continuous and compact char layer. It explores an effective quantitative analysis of the flame resistance of organic–inorganic hybrid IFRCs, deepening the flame‐retarding mechanism.  相似文献   

20.
Poly(lactic acid) (PLA) is the most suitable for biodegradable packaging film because of its excellent integrated property, but the poor gas barrier property is its weakness. In this study, a nanocomposite film based on PLA incorporated with 0‐, 1‐, 3‐, 5‐, 10‐, or 15‐wt% nano‐Ag was developed. Effect of multiscale structure on the barrier properties of PLA/nano‐Ag films was studied. The PLA nanocomposite film with 5‐wt% nano‐Ag had the lowest water vapor permeability (WVP) value. Oxygen transmission rate (OTR) value for PLA nanocomposites with 3‐wt% nano‐Ag was found to be the lowest among all the samples. Multiscale structure was demonstrated by the scanning electron microscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction measurement, and differential scanning calorimetry results. The crystallinity of the PLA phase increased with the content of nano‐Ag in the PLA composites. The evolution of the PLA phase crystallinity could improve the barrier properties of PLA/nano‐Ag composite films for food packaging applications. From the view of multiscale structure, it is better to achieve a balance among short‐range conformation in the amorphous region, long‐range‐ordered structure, and ordered aggregated structure to improve the barrier properties of PLA/nano‐Ag composite films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号