首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The title molecule, 2‐(4‐chlorophenyl)‐1‐methyl‐1H‐benzo[d]imidazole (C14H11ClN2), was prepared and characterized by 1H NMR, 13C NMR, IR, and single‐crystal X‐ray diffraction. The molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the title compound in the ground state have been calculated by using the Hartree‐Fock (HF) and density functional theory (DFT/B3LYP) method with 6‐31G(d) basis sets, and compared with the experimental data. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and GIAO 1H and 13C NMR chemical shifts show good agreement with experimental values. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6‐31G(d) basis set by applying the Onsager and the polarizable continuum model (PCM). Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, and nonlinear optical (NLO) properties of the title compound were investigated by theoretical calculations. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
1H and 13C NMR chemical shift calculations using the density functional theory–gauge including/invariant atomic orbitals (DFT–GIAO) approximation at the B3LYP/6‐311G++(d,p) level of theory have been used to assign both natural diastereoisomers of 6β‐hydroxyhyoscyamine. The theoretical chemical shifts of the 1H and 13C atoms in both isomers were calculated using a previously determined conformational distribution, and the theoretical and experimental values were cross‐compared. For protons, the obtained average absolute differences and root mean square (rms) errors for each comparison showed that the experimental chemical shifts of dextrorotatory and levorotatory 6β‐hydroxyhyoscyamines correlated well with the theoretical values calculated for the (3R,6R,2′S) and (3S,6S,2′S) configurations, respectively, whereas for 13C atoms the calculations were unable to differentiate between isomers. The nature of the relatively large chemical shift differences observed in nuclei that share similar chemical environments between isomers was asserted from the same calculations. It is shown that the anisotropic effect of the phenyl group in the tropic ester moiety, positioned under the tropane ring, has a larger shielding effect over one ring side than over the other one. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Density functional theory (DFT)/Becke–Lee–Yang–Parr (B3LYP) and gauge‐including atomic orbital (GIAO) calculations were performed on a number of 1,2,4‐triazole derivatives, and the optimized structural parameters were employed to ascertain the nature of their predominant tautomers. 13C and 15N NMR chemical shifts of 3‐substituted 1,2,4‐triazole‐5‐thiones and their propargylated derivatives were calculated via GIAO/DFT approach at the B3LYP level of theory with geometry optimization using a 6‐311++G** basis set. A good agreement between theoretical and experimental 13C and 15N NMR chemical shifts could be found for the systems investigated. The data generated were useful in predicting 15N chemical shifts of all the nitrogen atoms of the triazole ring, some of which could not be obtained in solution state 15N HMBC/HSQC NMR measurements. The energy profile computed for the dipropargylated derivatives was found to follow the product distribution profile of regioisomers formed during propargylation of 1,2,4‐triazole thiones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
QIU  Limei  GONG  Xuedong  WANG  Guixiang  ZHENG  Jian  XIAO  Heming 《中国化学》2009,27(3):455-468
Based on the optimized molecular geometries at the DFT‐B3LYP/6‐31G?? level, IR spectra, thermodynamic functions, as well as 13C and 1H NMR chemical shifts, were obtained and discussed for polynitro‐1,3‐bishomo‐pentaprismanes (PNBPP). The comparison of the calculated IR frequencies and NMR chemical shifts showed considerable agreements with the available experimental results. IR regions, 13C and 1H NMR chemical shifts of PNBPP were assigned. The relationships of the thermodynamic functions with temperature and the number of nitro groups were discussed, and it was found that the latter showed a good group additivity rule. These calculated data and discussions would be helpful for the further study of PNBPP.  相似文献   

5.
Isocyanoferrocene ( 1 ) and 1, 1′‐diisocyanoferrocene ( 2 ) were prepared and studied by 1H, 13C, 14N and 57Fe NMR spectroscopy in order to gain a more complete data set. The NMR data of 1 (chemical shifts and coupling constants) were calculated by DFT methods [B3LYP/6‐311+G(d, p)] and compare favourably with experimental data. The molecular structure of 1 was determined by X‐ray structural analysis, and an almost undistorted ferrocene‐like geometry was found.  相似文献   

6.
The influence of the position of nitro group toward the carboxylic group on the vibration structure of the molecule was estimated. Optimized geometrical structures were calculated (HF, B3PW91, B3LYP). Experimental and theoretical FT‐IR, FT‐Raman, and nuclear magnetic resonance (NMR) spectra of the title compounds were recorded and analyzed. The most important vibrational bands of nitro and carboxyl groups and the benzene ring were assigned. Wavenumbers and intensities for the three acids studied were compared and discussed. Data of chemical shifts in 1H and 13C NMR spectra of 2‐, 3‐, and 4‐nitrobenzoic acids were analyzed in comparison with benzoic acid molecule. The calculated parameters are compared with experimental characteristics of these molecules. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

7.
Optimised synthesis procedures and results of X‐ray single crystal structure analyses for 4‐(dibromoboryl)toluene, 1, 3‐bis(dibromoboryl)benzene, 1, 4‐bis(dibromoboryl)benzene, and 1, 3, 5‐tris(dibromoboryl)benzene are reported. These compounds have also been studied by Hartree‐Fock (HF), density functional theory (DFT), and Mßller‐Plesset second‐order perturbation (MP2) methods in combination with the polarized double‐ζ valence (SVP) and polarized triple‐ζ valence (TZVP) basis sets of Ahlrichs and coworkers. A comparison of the quantum chemical results for optimised geometries and computed NMR chemical shifts with experiment is presented to test the quality of the various methods for this class of compounds. All DFT methods tested yield optimised geometries within the experimental error bars of 3σ for bond lengths, whereas larger deviations among the methods are observed for computed NMR chemical shifts. This calibration recommends the B3LYP/SVP combination as a reliable and computationally efficient level of theory to assess the structures and absolute and relative 1H‐, 13C‐ and 11B NMR shift values of borylated aromatic compounds in future investigations.  相似文献   

8.
In this work, the theoretical studies on the structure, FT-IR, NMR, and UV–Vis spectroscopy of (E)-N-benzylidenebenzenamine (A1) and (E)-N-(2, 4′-dichlorobenzylidene) propan-1-amine (A2) are presented. The optimized structure of the molecules, NMR and UV–Vis spectra analysis were determined by the Density Functional Theory (DFT) method using B3LYP/6-311G (d, p) basis set. For FT-IR analysis, both the HF and DFT methods were used in order to determine their accuracy and reliability in theoretical calculations. The computed result of DFT calculations in comparison with the experimental results showed that the DFT method gives a more accurate prediction. The infrared (IR) spectra for the imine molecules have been recorded in the region of 500–4000 cm?1. The gauge-independent atomic orbital (GIAO) method has been used to evaluate the 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecules. The computed results of NMR spectra of the molecules was found to be in good agreement with the experimental data. The UV–Vis spectra of the molecules were computed to determine the HOMO-LUMO energies in order to gain insight into their electronic properties. Mulliken population analysis on atomic charges of the molecules was also calculated using the HF (Hartree-Fock) and B3LYP method. All the computed results indicated that the B3LYP method provides satisfactory results and, therefore, can be employed to support experimental data. It also demonstrated a reliable approach towards characterization of molecules in chemical science.  相似文献   

9.
1‐Hydroxymethylindazole and 1‐hydroxymethylbenzotriazole have been studied in solution by 1H, 13C and 15N NMR spectroscopy and the X‐ray structure of the second compound determined. DFT and GIAO calculations have been used to discuss geometries, energies (comparatively with 2‐substituted isomers) and NMR chemical shifts.  相似文献   

10.
4‐Hydroxycoumarins are compounds with a lot of applications as drugs and herbicides. They have very interesting spectral and chemical properties, which are investigated theoretically and experimentally. Some new 4‐hydroxycoumarins with arylydene‐β‐ketoester or arylydene‐2,4‐pentanedione side chain were synthesized by two step synthetic scheme. Their structure was characterized by UV–vis, IR, and 1H NMR methods. The spectral behavior of the optimized structures of these compounds was reproduced by the hybrid DFT methods B3LYP and B3P86 with 6‐31G** and aug‐cc‐pVDZ basis sets. Electronic excited states and vibrational frequencies were calculated. HF method was also used for comparison, because of the lack of electronic correlation. The theoretical spectra were compared with the experimental ones. A lot of compounds show good agreement between experimental and some of the theoretical data, especially obtained by aug‐cc‐pVDZ basis set. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

11.
The configuration at C‐3 of the 3α‐ and 3β‐hydroxy metabolites of tibolone was studied by extensive application of one‐ and two‐dimensional 1H and 13C NMR spectroscopy combined with molecular modeling performed at the B3LYP/6–31G(d) level. Using HF and DFT GIAO methods, shielding tensors of the two molecules were computed; comparison of the calculated NMR chemical shifts with the experimental values revealed that the density functional methods produced the best results for assigning proton and carbon resonances. Although steroids are relatively large molecules, the present approach appears accurate enough to allow the determination of relative configurations by using calculated 13C resonances; the chemical shift of pairs of geminal α/β hydrogen atoms can also be established by using calculated 1H resonances. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
《中国化学会会志》2018,65(8):932-939
1‐(3‐amino‐4‐thia‐1,2‐diazaspiro[4.11]hexadec‐2‐en‐1‐yl)ethan‐1‐one was synthesized and experimentally characterized by using FT‐IR, 1H NMR, 13C NMR, and UV–Vis spectroscopy. The structure of the compound was confirmed by single‐crystal X‐ray diffraction. In the crystal structure, the molecules are linked by pairs of N‐H⋯N hydrogen bonds, forming centrosymmetric dimers with the graph‐set motif. The water molecule also plays an important role in the stabilization of the crystal structure, bridging the dimers to form a two‐dimensional supramolecular network. The molecular geometry, frontier molecular orbitals, vibrational frequencies, electronic properties, and molecular electrostatic potential were calculated using density functional theory (DFT) with the B3LYP/6‐311G(d,p) basis set. Geometric parameters, vibrational assignments, and electronic properties such as calculated energies, excitation energies, and oscillator strengths were compared with the experimental data, and it was seen that the theoretical results support the experimental parameters.  相似文献   

13.
The structural features of the 1H‐imidazo[4,5‐c]pyridine (ICPY) tautomers and homodimers of the most stable tautomers have been studied by quantum chemical methods. FTIR and Raman spectra of the ICPY were recorded in the range of 4000–60 cm?1 and 3500–5 cm?1. The predominant tautomer among four possible isomers of ICPY were determined. The optimized geometries and vibrational frequencies of possible ICPY tautomers and dimers were computed by B3LYP/DFT method with 6‐311++G(d,p) and 6‐31G(d) basis sets. All vibrational frequencies assigned in detail with the help of total energy distribution (TED) and isotopic shifts. ICPY dimeric forms were also characterized according to their hydrogen bonding interactions, and it has been found that the most stable ICPY homodimer establishes moderate strong N ? H …N type hydrogen bond. 1H NMR, 13C NMR, and 15N NMR properties have been calculated for all tautomeric forms using the gauge independent atomic orbital (GIAO) method. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
The molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) 1H‐ and 13C NMR chemical shift values of the title compound in the ground state have been calculated using the Hartree‐Fock (HF) and density functional theory (DFT) methods with 6‐31G(d) basis sets, and compared with the experimental data. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters and the theoretical vibrational frequencies, and 1H‐ and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained by semiempirical (AM1) calculations with respect to the selected torsion angle, which was varied from ?180° to +180° in steps of 10°. The energetic behavior of the title compound in solvent media was examined using the B3LYP method with the 6‐31G(d) basis set by applying the Onsager and the polarizable continuum model (PCM). The results obtained with these methods reveal that the PCM method provided more stable structure than Qnsager's method. By using TD‐DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD‐DFT method and the experimental one is determined. The predicted nonlinear optical properties of the title compound are much greater than ones of urea. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, NBO analysis and thermodynamic properties of the title compound were investigated using theoretical calculations. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

15.
In the title compound, C11H7NO4, there is a dihedral angle of 45.80 (7)° between the planes of the benzene and maleimide rings. The presence of O—H...O hydrogen bonding and weak C—H...O interactions allows the formation of R33(19) edge‐connected rings parallel to the (010) plane. Structural, spectroscopic and theoretical studies were carried out. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) and 6–31++G(d,p) levels are compared with the experimentally determined molecular structure in the solid state. Additional IR and UV theoretical studies allowed the presence of functional groups and the transition bands of the system to be identified.  相似文献   

16.
We have reported a simple and efficient reaction for the synthesis of some new functionalized azo structures which were prepared by electron deficient acetylenic compounds in the presence of triphenylphosphine. The characterization of the synthesized azo compounds has been determined by FTIR, UV‐Vis, 1H NMR, 13C NMR and Mass spectroscopic techniques. The influence of H‐bonding on the products has been shown by different experimental analysis. Also, the regioselectivity of the reaction, tautomerization equilibrium and the stability of products was investigated using DFT calculations at the B3LYP/6‐31G level of theory.  相似文献   

17.
1,2,3,4,6‐Penta‐O‐acetyl‐α‐d ‐glucopyranose and the corresponding [1‐2H], [2‐2H], [3‐2H], [4‐2H], [5‐2H], and [6,6‐2H2]‐labeled compounds were prepared for measuring deuterium/hydrogen‐induced effects on 13C chemical shift nΔ (DHIECS) values. A conformational analysis of the nondeuterated compound was achieved using density functional theory (DFT) molecular models that allowed calculation of several structural properties as well as Boltzmann‐averaged 13C NMR chemical shifts by using the gauge‐including atomic orbital method. It was found that the DFT‐calculated C–H bond lengths correlate with 1Δ DHIECS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
2‐Nitroimino‐5‐nitro‐hexahydro‐1,3,5‐triazine (NNHT), was synthesized and its structure was determined by single‐crystal X‐ray diffraction. The crystal is monoclinic, space group P21/c with crystal parameters of a = 9.4031(13) Å, b = 8.5891(12) Å, c = 9.0200(13) Å, β = 91.213(2)°, V = 728.33(18) Å3, Z = 4, F(000) = 392, Dc = 1.734 g/cm3. The experimental geometry of NNHT was input to Gaussian‐03W program and optimized using DFT‐B3LYP/6‐311++G** method. The IR frequencies and NMR chemical shift were carried out and compared well with those of the experimental. The atomic net charges and the population analysis are discussed. The heat of formation (HOF) for NNHT was evaluated by designing an isodesmic reaction. The detonation velocity (D) and detonation pressure (P) were estimated by using the well known Kamlet‐Jacobs equation, based on the theoretical HOF.  相似文献   

19.
The title compound, N′‐benzylidene‐N‐[4‐(3‐methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐chloro‐acetic acid hydrazide, has been synthesized and characterized by elemental analysis, IR, 1H and 13C NMR, and X‐ray single crystal diffraction. The compound crystallizes in the orthorhombic space group P 21 21 21 with a = 5.8671 (3) Å, b = 17.7182 (9) Å, and c = 20.6373 (8) Å. Moreover, the molecular geometry from X‐ray experiment, the molecular geometry, vibrational frequencies, and gauge‐including atomic orbital 1H and 13C chemical shift values of the title compound in the ground state have been calculated by using the Hartree–Fock and density functional methods (B3LYP) with 6‐31G(d) and 6‐31G(d,p) basis sets. The results of the optimized molecular structure are exhibited and compared with the experimental X‐ray diffraction. Besides, molecular electrostatic potential, Frontier molecular orbitals, and thermodynamic properties of the title compound were determined at B3LYP/6‐31G(d) levels of theory. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

20.
Keto‐enol tautomerism in mono‐ and dithio‐substituted analogs of tropolone was investigated using electronic structure computations. Seven structural isomers of C7H6OS and four of C7H6S2 were optimized fully in gas phase at HF and B3LYP theoretical levels in combination with the 6‐311++g** basis set, as well as with the CBS‐QB3 and G3 methods. To examine the effects of an aqueous solvent on tautomeric equilibrium constants, each species was optimized in water using the self‐consistent reaction field polarizable continuum model at HF/6‐311++g** and B3LYP/6‐311++g** model chemistries. In both phases it was found that the enol forms were significantly more stable with respect to electronic energy and Gibbs free energy compared to the keto isomers, and outnumbered the keto species by several orders of magnitude. This was understood on the basis of elementary Hückel theory and the 4n + 2 rule, and supported by nucleus independent chemical shifts computations of NMR chemical shifts in these seven membered cyclic systems. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号