首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The density functional theory was used for simulation of the NO reduction reaction with carbon monoxide on a reduced Ti8O15 nanocluster. The reaction proceeds on oxygen vacancies formed via the removal of terminal or bridging O atoms. In the case of adsorption of two NO molecules of such sites, a stable adsorption complex with the bidentate ligand ‥ONNO is produced. When a CO molecule approaches one of the O atoms of this cycle, the following exothermic reaction yielding N2 and CO2 adsorbed on the Ti8O16 cluster takes place: 2NO+ CO + Ti8O15 → N2+ Ti8O16 · CO2. The proposed model of the reaction agrees well with experimental data.  相似文献   

2.
The gas-phase reaction mechanism of NO and CO catalyzed by Rh atom has been systematically investigated on the ground and first excited states at CCSD(T)//B3LYP/6-311+G(2d), SDD level. This reaction is mainly divided into two reaction stages, NO deoxygenation to generate N2O and then the deoxygenation of N2O with CO to form N2 and CO2. The crucial reaction step deals with the NO deoxygenation to generate N2O catalyzed by Rh atom, in which the self-deoxygenation of NO reaction pathway is kinetically more preferable than that in the presence of CO. The minimal energy reaction pathway includes the rate-determining step about N–N bond formation. Once the NO deoxygenation with CO catalyzed by rhodium atom takes place, the reaction results in the intermediate RhN. Then, the reaction of RhN with CO is kinetically more favorable than that with NO, while both of them are thermodynamically preferable. These results can qualitatively explain the experimental finding of N2O, NCO, and CN species in the NO + CO reaction. For the N2O deoxygenation with CO catalyzed by rhodium atom, the reaction goes facilely forward, which involves the rate-determining step concerning CO2 formation. CO plays a dominating role in the RhO reduction to regenerate Rh atom. The complexes, OCRhNO, RhON2, RhNNO, ORhN2, RhCO2, RhNCO, and ORhCN, are thermodynamically preferred. Rh atom possesses stronger capability for the N2O deoxygenation than Rh+ cation.  相似文献   

3.
We show for the first time that atomically dispersed Rh cations on ceria, prepared by a high‐temperature atom‐trapping synthesis, are the active species for the (CO+NO) reaction. This provides a direct link with the organometallic homogeneous RhI complexes capable of catalyzing the dry (CO+NO) reaction. The thermally stable Rh cations in 0.1 wt % Rh1/CeO2 achieve full NO conversion with a turn‐over‐frequency (TOF) of around 330 h?1 per Rh atom at 120 °C. Under dry conditions, the main product above 100 °C is N2 with N2O being the minor product. The presence of water promotes low‐temperature activity of 0.1 wt % Rh1/CeO2. In the wet stream, ammonia and nitrogen are the main products above 120 °C. The uniformity of Rh ions on the support, allows us to detect the intermediates of (CO+NO) reaction via IR measurements on Rh cations on zeolite and ceria. We also show that NH3 formation correlates with the water gas shift (WGS) activity of the material and detect the formation of Rh hydride species spectroscopically.  相似文献   

4.
The RAPRENOx process for NO reduction in combustion products involves reaction of nitric oxide with isocyanic acid. We have developed a mechanism for the gas-phase reaction of isocyanic acid with nitric oxide in the presence of various amounts of O2, H2O, and CO. Kinetics calculations using the mechanism are compared with the experimental data of Siebers and Caton, and the model reproduces all trends of these data. Sensitivity and rate-of-production analyses show that the reactions of HNCO with OH, O, and H play a major role in the NO-removal process and that NO removal occurs primarily by reaction of NO with NCO to form N2O, which subsequently reacts slowly to form N2. The overall reaction is critically dependent on production of radicals. When O2, H2O, and CO are present, the radicals are supplied by the moist-CO chain branching sequence. When any of these species is absent, radicals must be supplied by other reactions, principally the N2O decomposition reaction and the reaction of the NH2 radical with NO.  相似文献   

5.
Some bacterial heme proteins catalyze the coupling of two NO molecules to generate N2O. We previously reported that a heme Fe–NO model engages in this N?N bond‐forming reaction with NO. We now demonstrate that (OEP)CoII(NO) similarly reacts with 1 equiv of NO in the presence of the Lewis acids BX3 (X=F, C6F5) to generate N2O. DFT calculations support retention of the CoII oxidation state for the experimentally observed adduct (OEP)CoII(NO?BF3), the presumed hyponitrite intermediate (P.+)CoII(ONNO?BF3), and the porphyrin π‐radical cation by‐product of this reaction, and that the π‐radical cation formation likely occurs at the hyponitrite stage. In contrast, the Fe analogue undergoes a ferrous‐to‐ferric oxidation state conversion during this reaction. Our work shows that cobalt hemes are chemically competent to engage in the NO‐to‐N2O conversion reaction.  相似文献   

6.
A kinetic study of the reduction of nitric oxide (NO) by isobutane in simulated conditions of the reburning zone was carried out in a fused silica jet‐stirred reactor operating at 1 atm, at temperatures ranging from 1100 to 1450 K. In this new series of experiments, the initial mole fraction of NO was 1000 ppm, that of isobutane was 2200 ppm, and the equivalence ratio was varied from 0.75 to 2. It was demonstrated that for a given temperature, the reduction of NO is favored when the temperature is increased and a maximum NO reduction occurs slightly above stoichiometric conditions. The present results generally follow those reported in previous studies of the reduction of NO by C1 to C3 hydrocarbons or natural gas as reburn fuel. A detailed chemical kinetic modeling of the present experiments was performed using an updated and improved kinetic scheme (979 reversible reactions and 130 species). An overall reasonable agreement between the present data and the modeling was obtained. Furthermore, the proposed kinetic mechanism can be successfully used to model the reduction of NO by ethylene, ethane, acetylene, a natural gas blend (methane‐ethane 10:1), propene, and HCN. According to this study, the main route to NO reduction by isobutane involves ketenyl radical. The model indicates that the reduction of NO proceeds through the reaction path: iC4H10 → C3H6 → C2H4 → C2H3 → C2H2 → HCCO; HCCO + NO → HCNO + CO and HCN + CO2; HCNO + H → HCN → NCO → NH; NH + NO → N2 and NH + H → followed by N + NO → N2; NH + NO → N2O followed by N2O + H → N2. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 365–377, 2000  相似文献   

7.
Flash pyrolysis of (CHZ)2TNR and (SCZ)2TNR was conducted by T-jump/FTIR spectroscopy under 0.1 MPa Ar atmosphere. The results show that eleven IR-active gas products obtained during flash pyrolysis process of the two title compounds are NO, CO, HCN, NH3, NO2, N2O, HNCO, HNO2, CO2, H2O and HCHO, of which NO and CO are the main gas products. The molar fraction of the individual product in the pyrolysis gas mixture was described as a function of time. At least some of the NO2, N2O and H2O can result from the oxidization reaction of NH3 during flash pyrolysis of (CHZ)2TNR. It can be concluded that the two compounds are not worthy of further in-depth consideration of the adoption in detonators as eco-friendly primary explosive, and should not be used as gas generation composition of automobile crash airbag system taking into account the toxicity.  相似文献   

8.
The low‐temperature reduction of N2O plays a significant role for solving the growing environmental and health issues caused by emission of this greenhouse gas. The aim of this study is to investigate the possible reaction pathways for the reduction of N2O by CO or SO2 molecule over Si‐doped boron nitride nanosheet (Si‐BNNS). According to our results, a B or N‐vacancy defect in BN sheet could be able to greatly stabilize the single Si adatom. The relatively large diffusion barrier for the Si atom over the defective BN sheet also indicates Si‐BNNS is stable enough to be utilized in catalytic reduction of N2O. The large charge‐transfer from the surface to N2O leads to the spontaneous dissociation of this molecule into N2 molecule and an activated oxygen atom (Oads). The Oads moiety is then eliminated by CO or SO2 molecule. The calculated activation energies and reaction energies reveal that the Si atom located on top of the B‐vacancy site has a large catalytic activity toward the reduction of N2O by CO or SO2.  相似文献   

9.
Operando shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) with on-line mass spectrometry (MS) has been used to investigate the surface species, such as NO, NOH, NO2, N2O, and reaction products of the NO reduction reaction with CO and H2 over supported Rh-based catalysts in the form of catalyst extrudates. By correlating surface intermediates and reaction products, new insights in the reaction mechanism could be obtained. Upon applying different reaction conditions (i. e., H2 or CO), the selectivity of the catalytic reaction could be tuned towards the formation of N2. Furthermore, in the absence of Rh, no reaction products were detected. The importance of the operando SHINERS as a surface-sensitive characterization technique in the field of heterogeneous catalysis provides routes towards a better understanding of catalytic performance.  相似文献   

10.
The methodology of constructing a phenomenological model for complex heterogeneous catalytic reactions is described in detail. The proposed approach is applicable to development of mathematical models describing the onset of self-oscillations in hydrocarbon oxidation on the transition metal surface. The approach is based on construction of a microkinetic scheme taking into account the formation of main reaction products and intermediates, on estimation of the heat of reaction, activation energy, and preexponential factor for elementary steps and includes development and a subsequent analysis of the corresponding mathematical model. Catalytic reactions are considered in the ideal adsorption layer approximation without taking into account the relationship between coverages and spatial coordinates. Accordingly, the mathematical model is an independent system of ordinary differential equations. This methodology is used to develop a point (lumped) model for ethane oxidation over nickel, which is based on a 36-step microkinetic scheme taking into account the oxidation and reduction of nickel and the formation of total (CO2 and H2O) or partial (CO and H2) ethane oxidation products, as well as the dehydrogenation of ethane into ethylene. The proposed model predicts the onset of self-oscillations in this reaction at atmospheric pressure in the temperature range from 850 to 1400 K. The kinetic oscillations are caused by the cyclic oxidation and reduction of nickel. The self-oscillations of the reaction rate are accompanied by oscillations of the catalyst temperature. The results of modeling are compared with experimental data.  相似文献   

11.
Temperature programmed desorption (TPD) and density functional theory (DFT) are used to investigate adsorption sites and reaction of coadsorbed NO and CO on planar Ir(210) and faceted Ir(210) with tailored sizes of three‐sided nanopyramids exposing (311), (31${\bar 1}$ ) and (110) faces. Both planar and faceted Ir(210) are highly active for reduction of NO by CO with high selectivity to N2, which is accompanied by simultaneous oxidation of CO. Evidence is found for structure sensitivity in adsorption sites and reaction of coadsorbed NO and CO on faceted Ir(210) versus planar Ir(210). Strong interaction between NO and CO at high NO exposure and one‐monolayer CO pre‐coverage results in “explosive” evolution of N2 and CO2 on planar Ir(210) and size effects in reduction of NO by CO on faceted Ir(210) for average facet size ranging from 5 to 14 nm without change in facet structure.  相似文献   

12.
The reaction of precursors containing both nitrogen and oxygen atoms with NiII under 500 °C can generate a N/O mixing coordinated Ni‐N3O single‐atom catalyst (SAC) in which the oxygen atom can be gradually removed under high temperature due to the weaker Ni?O interaction, resulting in a vacancy‐defect Ni‐N3‐V SAC at Ni site under 800 °C. For the reaction of NiII with the precursor simply containing nitrogen atoms, only a no‐vacancy‐defect Ni‐N4 SAC was obtained. Experimental and DFT calculations reveal that the presence of a vacancy‐defect in Ni‐N3‐V SAC can dramatically boost the electrocatalytic activity for CO2 reduction, with extremely high CO2 reduction current density of 65 mA cm?2 and high Faradaic efficiency over 90 % at ?0.9 V vs. RHE, as well as a record high turnover frequency of 1.35×105 h?1, much higher than those of Ni‐N4 SAC, and being one of the best reported electrocatalysts for CO2‐to‐CO conversion to date.  相似文献   

13.
Several Co(III) complexes have been found to be active catalysts in the reaction of NO with n-butylamine. N2 and N2O were identified as gaseous products of the reduction. Isotope scrambling in N2 and N2O in the experiments with N-15 enriched NO suggests two types of stoichiometric processes. The catalysis is interpreted by formation of a NO-complex as intermediate.  相似文献   

14.
The selective catalytic reduction rate of NO with N‐containing reducing agents can be enhanced considerably by converting a part of NO into NO2. The enhanced reaction rate is more pronounced at lower temperatures by using an equimolar mixture of NO and NO2. The kinetics of NO oxidation over Pt‐WO3/TiO2 catalyst has been determined in a fixed‐bed reactor with different concentrations of oxygen, nitric oxide, and nitrogen dioxide in the presence of 8% water. It has been found that the reaction is second order with respect to nitric oxide, first order for oxygen with a third‐order rate constant. Also, it is found that there is no effect on the reaction order with an addition of NO2, CO, or SO2. It follows the same second order but the reaction rate is found to be changed. It is observed that in the case of NO2 and SO2, the reaction rate tends to decrease, but it increases with the addition of CO into the feed. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 613–620, 2006  相似文献   

15.
16.
Flow reactor experiments were performed to study moist CO oxidation in the presence of trace quantities of NO (0–400 ppm) and SO2 (0–1300 ppm) at pressures and temperatures ranging from 0.5–10.0 atm and 950–1040 K, respectively. Reaction profile measurements of CO, CO2, O2, NO, NO2, SO2, and temperature were used to further develop and validate a detailed chemical kinetic reaction mechanism in a manner consistent with previous studies of the CO/H2/O2/NOX and CO/H2O/N2O systems. In particular, the experimental data indicate that the spin‐forbidden dissociation‐recombination reaction between SO2 and O‐atoms is in the fall‐off regime at pressures above 1 atm. The inclusion of a pressure‐dependent rate constant for this reaction, using a high‐pressure limit determined from modeling the consumption of SO2 in a N2O/SO2/N2 mixture at 10.0 atm and 1000 K, brings model predictions into much better agreement with experimentally measured CO profiles over the entire pressure range. Kinetic coupling of NOX and SOX chemistry via the radical pool significantly reduces the ability of SO2 to inhibit oxidative processes. Measurements of SO2 indicate fractional conversions of SO2 to SO3 on the order of a few percent, in good agreement with previous measurements at atmospheric pressure. Modeling results suggest that, at low pressures, SO3 formation occurs primarily through SO2 + O(+M) = SO3(+M), but at higher pressures where the fractional conversion of NO to NO2 increases, SO3 formation via SO2 + NO2 = SO3 + NO becomes important. For the conditions explored in this study, the primary consumption pathways for SO3 appear to be SO3 + HO2 = HOSO2 + O2 and SO3 + H = SO2 + OH. Further study of these reactions would increase the confidence with which model predictions of SO3 can be viewed. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 317–339, 2000  相似文献   

17.
The open source rate‐based Reaction Mechanism Generator (RMG) software and its thermochemical and kinetics databases were extended to include nitrogen as a heteroatom. Specific changes to RMG and the mining of thermochemistry and reaction kinetics data are discussed. This new version of RMG has been tested by generating a detailed pyrolysis and oxidation model for ethylamine (EA, CH3CH2NH2) at ∼1400 K and ∼2 bar, and comparing it to recent shock tube studies. Validation of the reaction network with recent experimental data showed that the generated model successfully reproduced the observed species as well as ignition delay measurements. During pyrolysis, EA initially decomposes via a C C bond scission, and the CH2NH2 product subsequently produces the first H radicals in this system via β‐scission. As the concentration of H increases, the major EA consuming reaction becomes H abstraction at the α‐site by H radicals, leading to a chain reaction since its product generates more H radicals. During oxidation, the dominant N2‐producing route is mediated by NO and N2O. The observables were found to be relatively sensitive to the C C and C N EA bond scission reactions as well as to the thermodynamic values of EA; thermodynamic data for EA were computed at the CBS‐QB3 level and reported herein. This work demonstrates the ability of RMG to construct adequate kinetic models for nitrogenous species and discusses the pyrolysis and oxidation mechanisms of EA.  相似文献   

18.
《Chemical physics》2005,308(3):211-216
Mixed quantum-classical calculations have been carried out for the O(1D) + N2O reaction with an emphasis on the effect of the relative translational energy as well as initial vibrational state of N2O on the NO + NO/N2 + O2 product branching. The calculations were done within a planar constraint using a five-dimensional analytical potential energy surface previously developed by our group. Three vibrational coordinates in the N2O molecule were treated with a quantum wave packet technique while other two degrees of freedom, translational and angular motions of O(1D) with respect to N2O, were described with classical mechanics. We have found that the initial orientation angle significantly affects the NO + NO/N2 + O2 product branching similar to our previous classical trajectory result using the same potential surface. It has been also found that the branching ratio decreases as the translational energy increases except for a low energy region. Excitation of the initial vibrational state of the N2O reactant does not largely affect the reaction dynamics.  相似文献   

19.
The plasma-induced reactions of traces of methane in nitrogen and nitrogen/oxygen carriers have been investigated by freezing the products onto a 10 K CsI substrate and performing FTIR analysis on the product mixture. Isotopic substitution studies have been used to assist in identification of reaction intermediates and final products. A combination of low (10 mTorr) and high (2 Torr) pressure discharges has also been used to help in the identification of these products. Oxygen concentration was increased in a stepwise fashion to determine its effect on the reaction product distribution. In the present work, methyl radical was the principal product in low-pressure N2/CH4 plasmas, and small amounts of HCN and NH3 were also produced. In the higher-pressure plasmas, HCN and NH3 were the principal products. As O2 was added to the plasmas, CO, H2O, CO2, N2O, NO, O3, HONO, and HNO3 were produced in approximately the order shown, i.e., CO was formed in good yield at low oxygen partial pressures, but HNO3 was produced only in slight yield even at the highest oxygen pressures used in this work. These results are discussed in terms of the development of a plasma device having potential application for destruction of environmentally hazardous materials and how trace organic pollutants might react in such a system.  相似文献   

20.
A fundamental understanding on the dynamically structural evolution of catalysts induced by reactant gases under working conditions is challenging but pivotal in catalyst design. Herein, in combination with state-of-the-art mass spectrometry for cluster reactions, cryogenic photoelectron imaging spectroscopy, and quantum-chemical calculations, we identified that NO adsorption on rhodium-cerium bimetallic oxide cluster RhCeO2 can create a Ce3+ ion in product RhCeO2NO that serves as the starting point to trigger the catalysis of NO reduction by CO. Theoretical calculations substantiated that the reduction of another two NO molecules into N2O takes place exclusively on the Ce3+ ion while Rh behaves like a promoter to buffer electrons and cooperates with Ce3+ to drive NO reduction. Our finding demonstrates the importance of NO in regulating the catalytic behavior of Rh under reaction conditions and provides much-needed insights into the essence of NO reduction over Rh/CeO2, one of the most efficient components in three-way catalysts for NOx removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号