首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A silicon compound (GAPSO) was synthesized to modify the diglycidyl ether of bisphenol-A (DGEBA). The chemical structure of GAPSO was confirmed using FT-IR, 29Si NMR and GPC. The mechanical and thermal properties and morphologies of the cured epoxy resins were investigated by impact testing, tensile testing, differential scanning calorimetry and environmental scanning electron microscopy. The impact strength and tensile strength were both increased by introducing GAPSO, meanwhile the glass transition temperature (Tg ) was not decreased and the morphologies of the fracture surfaces show that the compatibility of GAPSO with epoxy resin was very good and the toughening follows the pinning and crack tip bifurcation mechanism. The high functional groups in GAPSO can react during the curing process, and chemically participate in the crosslinking network. GAPSO is thus expected to improve the toughness of epoxy resin, meanwhile maintain the glass transition temperature.  相似文献   

2.
A novel epoxy system was developed through the in situ curing of bisphenol A type epoxy and 4,4′‐diaminodiphenylmethane with the sol–gel reaction of a phosphorus‐containing trimethoxysilane (DOPO–GPTMS), which was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) with 3‐glycidoxypropyltrimethoxysilane (GPTMS). The preparation of DOPO–GPTMS was confirmed with Fourier transform infrared, 1H and 31P NMR, and elemental analysis. The resulting organic–inorganic hybrid epoxy resins exhibited a high glass‐transition temperature (167 °C), good thermal stability over 320 °C, and a high limited oxygen index of 28.5. The synergism of phosphorus and silicon on flame retardance was observed. Moreover, the kinetics of the thermal oxidative degradation of the hybrid epoxy resins were studied. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2354–2367, 2003  相似文献   

3.
The synergism in the glass‐transition temperature (Tg) of ternary systems based on benzoxazine (B), epoxy (E), and phenolic (P) resins is reported. The systems show the maximum Tg up to about 180 °C in BEP541 (B/E/P = 5/4/1). Adding a small fraction of phenolic resin enhances the crosslink density and, therefore, the Tg in the copolymers of benzoxazine and epoxy resins. To obtain the ultimate Tg in the ternary systems, 6–10 wt % phenolic resin is needed. The molecular rigidity from benzoxazine and the improved crosslink density from epoxy contribute to the synergistic behavior. The mechanical relaxation spectra of the fully cured ternary systems in a temperature range of −140 to 350 °C show four types of relaxation transitions: γ transition at −80 to −60 °C, β transition at 60–80 °C, α1 transition at 135–190 °C, and α2 transition at 290–300 °C. The partially cured specimens show an additional loss peak that is frequency‐independent as a result of the further curing process of the materials. The ternary systems have a potential use as electronic packaging molding compounds as well as other highly filled systems. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1687–1698, 2000  相似文献   

4.
The acetyl esterified calixarene (CA) derivatives were prepared from calix[4]resorcinarene (CRA), and ptert‐butylcalixarene (BCA[n], n = 4, 6, 8), respectively. Using these CA derivatives as curing agents, the thermal curing reactions of two multifunctional epoxy resins (jER 828, 186 g/equiv., and ESCN, 193.7 g/equiv.) were investigated. The temperatures of glass transition (Tg) and decomposition (T) were measured by DSC and TGA, respectively. Based on the yields, Tgs, and Tds of the thermal cured jER 828 epoxy resin with CRA‐E100, the curing conditions were optimized to be tetrabutylphosphonium bromide (TBPB) as catalyst in NMP at 160 °C for 15 h. Under this curing condition, the cured materials of jER 828 or ESCN using various CA derivatives as curing agents were prepared. Except for BCA4 derivatives, the yields of thermal curing reaction were higher than 90%. Tgs and Ts of the resultant cured materials were in the range of 113–248 °C and 363–404 °C, respectively. These results mean that the cured epoxy resins with excellent Tgs were successfully formed by using CA derivatives as curing agents. It was also found that the Tgs of cured epoxy resins were strongly affected by the degree of esterification of CA derivatives. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1931–1942, 2010  相似文献   

5.
Novel microcapsules (MCs) with organic/inorganic hybrid shell were successfully fabricated using epoxy resin as core material and nano boron nitride (BN) and mesoporous silica (SBA‐15) as inorganic shell materials in aqueous solution containing a water‐compatible epoxy resin curing agent. The morphologies, thermal properties and Young's moduli of MCs were investigated. The results indicated that epoxy resins were encapsulated by BN/SBA‐15/epoxy polymer hybrid layer, the resulting MCs were spherical in shape and the introduction of inorganic particles made MCs had rough surface morphology. The mean modulus value of MCs was from 2.8 to 3.1 GPa. The initial decomposition temperature (Tdi) of MCs at 5 wt% weight loss was from 309 to 312°C. MCs showed excellent thermal stability below 260°C. The structures and properties of MCs could be tailored by controlling the weight ratio of inorganic particle. When the weight ratio of BN to SBA‐15 was 0.15:0.10, MCs had the highest Tdi and modulus. The resulting MCs were applied to high performance 4,4′‐bismaleimidodiphenylmethane/O,O′‐diallylbisphenol A (BMI/DBA) system to design high performance BMI/DBA/MC systems. Appropriate content of MCs could improve the fracture toughness and maintain the glass transition temperature (Tg) of BMI/DBA system. The core materials released from fractured MCs could bond the fracture surfaces of the BMI/DBA matrix through the polymerization of epoxy resins. When the healing temperature schedule of 100°C/2h+150°C/1h was applied, 15 wt% MCs recovered 98% of the virgin fracture toughness of BMI/DBA. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Epoxy resins containing quinazolone rings were synthesized and characterized. Epoxy resins were made by reacting bisquinazolone phenol or bisquinazoline with epichlorohydrin or the diglycidyl ether of Bisphenol A. These resins were analyzed by DSC, GPC, IR, and NMR. The electrical and mechanical properties of the cured resins were evaluated. They have glass transition temperature above 200°C and excellent thermal stability, and Tg increases in the order of o-, m-, p-substituted phenol groups.  相似文献   

7.
The flame‐retarded epoxy resin with improved thermal properties based on environmentally friendly flame retardants is vital for industrial application. Hereby, a novel reactive‐type halogen‐free flame retardant, 10‐(3‐(4‐hydroxy phenyl)‐3,4‐dihydro‐2H‐benzo[e] [1,3] oxazin‐4‐yl)‐5H‐phenophosphazinine 10‐oxide (DHA‐B) was synthesized via a two‐step reaction route. Its structure was characterized using 1H, 13C, and 31P NMR and HRMS spectra. For 4,4′‐diaminodipheny ethane (DDM) and diglycidyl ether of bisphenol A (DGEBA)‐cured systems, the epoxy resin with only 2 wt% loading of DHA‐B passed V‐0 rating of UL‐94 test. Significantly, its glass transition temperature (Tg) and initial decomposition temperature (T5%) were as high as 169.6°C and 359.6°C, respectively, which were even higher than those of the corresponding original epoxy resin. Besides, DHA‐B decreased the combustion intensity during combustion. The analysis of residues after combustion suggested that DHA‐B played an important role in the condensed phase.  相似文献   

8.
We present a combined experimental and theoretical investigation of thermal properties of cycloaliphatic epoxy networks. The networks are prepared from 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate ERL-4221 as a monomer and 4-methylhexahydrophthalic anhydride as a curing agent and their glass transition temperature Tg is evaluated by dynamic mechanical and thermal mechanical analyses as well as by differential scanning calorimetry. It is found that the cured epoxy networks have high Tg values reaching 233–238 °C. The method of anharmonic oscillators is first proposed to simulate the effect of network structure on the thermal properties. It suggests that further increase of Tg values is not attained because of the formation of intramolecular cyclic structures. Studies of model reaction by mass-spectrometry confirm the formation of such structures at curing.  相似文献   

9.
A novel phosphorus‐containing aralkyl novolac (Ar‐DOPO‐N) was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) first with terephthaldicarboxaldehyde and subsequently with phenol. The chemical structures of the synthesized compounds were characterized with Fourier transform infrared, 1H and 31P NMR, and elemental analysis. Ar‐DOPO‐N blended with phenol formaldehyde novolac was used as a curing agent for o‐cresol formaldehyde novolac epoxy, resulting in cured epoxy resins with various phosphorus contents. The epoxy resins exhibited high glass‐transition temperatures (159–177 °C), good thermal stability (>320 °C), and retardation on thermal degradation rates. High char yields and high limited oxygen indices (26–32.5) were observed, indicating the resins' good flame retardance. Using a melamine‐modified phenol formaldehyde novolac to replace phenol formaldehyde novolac in the curing composition further enhanced the cured epoxy resins' glass‐transition temperatures (160–186 °C) and limited oxygen index values (28–33.5). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2329–2339, 2002  相似文献   

10.
We synthesized a novel phosphorus‐containing triamine [9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐yl‐tris(4‐aminophenyl) methane (dopo‐ta)] from the nucleophilic addition of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide and pararosaniline chloride, using triethylamine as an acid receiver. We confirmed the structure of dopo‐ta by IR, mass, and NMR spectra and elemental analysis. dopo‐ta served as a curing agent for diglycidyl ether of bisphenol A (DGEBA) and dicyclopentadiene epoxy (hp7200). Properties such as the glass‐transition temperature (Tg), thermal decomposition temperature, flame retardancy, moisture absorption, and dielectric properties of the cured epoxy resins were evaluated. The Tg's of cured DGEBA/dopo‐ta and hp7200/dopo‐ta were 171 and 190 °C, respectively. This high Tg phenomenon is rarely seen in the literature after the introduction of a flame‐retardant element. The flame retardancy increased with the phosphorus content, and a UL‐94 V‐0 grade was achieved with a phosphorus content of 1.80 wt % for DGEBA/dopo‐ta/diamino diphenylmethane (DDM) systems and 1.46 wt % for hp7200/dopo‐ta/DDM systems. The dielectric constants for DGEBA/dopo‐ta and hp7200/dopo‐ta were 2.91 and 2.82, respectively, implying that the dopo‐ta curing systems exhibited low dielectric properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5971–5986, 2005  相似文献   

11.
To further study the sub‐Tg heat flow transition of a cured epoxy resin, cured samples with different thermal history were investigated using torsion pendulum analysis (TPA) and thermal mechanical analysis (TMA). The results indicate that sub‐Tg heat flow transition could be related to the molecular relaxation from 20°C to the α‐peak, and that frozen‐in extra free volume is necessary for the appearance of sub‐Tg heat flow transition.  相似文献   

12.
Based on the 9,9-di(4-anilinyl)fluorene, structurally different fluorene-polyimino ketones have been obtained by the Buchwald-Hartwig cross coupling reaction. Their structure and performance have been characterized by FT-IR, 1H NMR, UV-vis and thermal analysis. The results show an agreement with the proposed structure, which possesses high glass transition temperature (Tg>250 ℃) and good thermal stability with high decomposition temperatures in nitrogen atmosphere (TD>520 ℃). Additionally, the polymers synthesized showed good solubility, which can be dissolved in common organic solvent CHCl3 at room temperature.  相似文献   

13.
CHEN  Xiaoquan  CHANG  Guanjun 《中国化学》2009,27(10):2093-2096
Using 4,4′‐dibromobenzophenone and 4,4′‐diaminoazobenzene as monomers, poly(aryl imino) containing azobenzene unit (PAI‐A) was synthesized via palladium‐catalyzed amination, and structurally characterized by means of FT‐IR, 1H NMR spectra and elemental analysis, the results of which show an agreement with the proposed structure. The UV absorption spectra were tested under different conditions. Additionally, differential scanning calorimetry (DSC) and thermogravimetric (TG) measurements show that PAI‐A possesses high glass transition temperature (Tg>176°C) and good thermal stability with high decomposition temperatures in nitrogen atmosphere (TD>410°C).  相似文献   

14.
Through addition reaction of Schiff‐base terephthalylidene‐bis‐(p‐aminophenol) ( DP‐1 ) and diethyl phosphite (DEP), a novel phosphorus‐modified epoxy, 4,4'‐diglycidyl‐(terephthalylidene‐bis‐(p‐aminophenol))diphosphonate ether ( EP‐2 ), was obtained. An modification reaction between EP‐2 and DP‐1 resulted in an epoxy compound, EP‐3 , possessing both phosphonate groups and C?N imine groups. The structure of EP‐2 was characterized by Fourier transform infrared (FTIR), elemental analysis (EA), 1H, 13C, and 31P NMR analyses. The thermal properties of phosphorus‐modified epoxies cured with 4,4'‐diaminodiphenylmethane (MDA) and 4,4'‐diaminodiphenyl ether (DDE) were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The activation energies of dynamic thermal degradation (Ed) were calculated using Kissinger and Ozawa's methods. The thermal degradation mechanism was characterized using thermogravimetric analysis/infrared spectrometry (TG‐IR). In addition, the flame retardancy of phosphorus‐modified epoxy thermosets was evaluated using limiting oxygen index (LOI) and UL‐94 vertical test methods. Via an ingenious design, phosphonate groups were successfully introduced into the backbone of the epoxies; the flame retardancy of phosphorus‐modified epoxy thermosets was distinctly improved. Due to incorporation of C?N imine group, the phosphorus‐modified epoxy thermosets exhibited high thermal stabilities; the values of glass‐transition temperatures (Tgs) were about 201–210°C, the values of Ed were about 220–490 kJ/mol and char yields at 700°C were 49–53% in nitrogen and 45–50% in air. These results showed an improvement in the thermal properties of phosphorus‐modified epoxy by the incorporation of C?N imine groups. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
张林常冠军   《中国化学》2009,27(2):428-432
以不同的二碘化合物和芳香二胺为单体,通过两种不同的方法经缩聚反应得到了系列高分子量、低分布的聚芳亚胺。其结构由FT-IR, 1H NMR1和元素分析表征。由DSC和TG测定结果可知,该系聚合物具有较高的玻璃化转变温度(Tg>150℃)和良好的热稳定性(TD>400℃)。另外,该系聚合物还表现出良好的溶解性能。  相似文献   

16.
Solid state 1H NMR line‐shape analysis and (double quantum) DQ 1H NMR experiments have been used to investigate the segmental and polymer chain dynamics as a function of temperature for a series of thermosetting epoxy resins produced using different diamine curing agents. In these thermosets, chemical crosslinks introduce topological constraints leading to residual stresses during curing. Materials containing a unique ferrocene‐based diamine (FcDA) curing agent were evaluated to address the role of the ferrocene fluxional process on the atomic‐level polymer dynamics. At temperatures above the glass transition temperature (Tg), the DQ 1H NMR experiments provided a measure of the relative effective crosslink and entanglement densities for these materials and revealed significant polymer chain dynamic heterogeneity in the FcDA‐cured thermosets. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1143–1156  相似文献   

17.
A reactive amino-ended toughener was blended with different commercial epoxy resins namely, diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, diglycidyl p-aminophenol and 1,5-naphthalenediamine as curing agent. The toughener was an aromatic amino-ended copolyethersulphone (coPES):poly(ether-sulphone)–poly(etherether-sulphone). The effect of the toughener on the thermal decomposition and char oxidation behaviour of the epoxy resins was studied by the simultaneous differential thermal analysis and thermogravimetric techniques. The glass transition temperature (T g) as well as characteristic parameters of decomposition, initial decomposition temperature (T i) and temperature at maximum degradation rate (T m), in both inert and oxidative environments, were determined in order to verify the influence of toughener on the thermal degradation of the different epoxy systems. It was observed that the presence of coPES maintains the high level thermal stability of the resin and that the glass transition temperature increase with the toughener percentage.  相似文献   

18.
Four sorts of epoxy resins containing degradable acetal linkages were synthesized by the reaction of bisphenol A (BA) or cresol novolak (CN) resin with vinyl ethers containing a glycidyl group [4‐vinlyoxybutyl glycidyl ether (VBGE) and cyclohexane dimethanol vinyl glycidyl ether (CHDMVG)] and cured with known typical amine‐curing agents. The thermal and mechanical properties of the cured resins were investigated. Among the four cured epoxy resins, the CN‐CHDMVG resin (derived from CN and CHDMVE) exhibited relatively high glass transition temperature (Tg = ca. 110 °C). The treatment of these cured epoxy resins with aqueous HCl in tetrahydrofuran (THF) at room temperature for 12 h generated BA and CN as degradation main products in high yield. Carbon fiber‐reinforced plastics (CFRPs) were prepared by heating the laminated prepreg sheets with BA‐CHDMVG (derived from BA and CHDMVE) and CN‐CHDMVG, in which strands of carbon fibers are impregnated with the epoxy resins containing conventional curing agents and curing accelerators. The obtained CFRPs showed good appearance and underwent smooth breakdown with the aqueous acid treatment in THF at room temperature for 24 h to produce strands of carbon fiber without damaging their surface conditions and tensile strength. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Synthesis and Properties of Novel Poly(amine ether)s   总被引:8,自引:0,他引:8  
Using aromatic bis(4-bromophenyl) ether and various aromatic diamines as the monomers, a series of novel poly(amine ether)s (PAEs) have been synthesized via palladium-catalyzed aryl amination, which is the Hartwig-Buchwald polycondensation reaction. Their structures were characterized by means of elemental analysis, FT-IR, 1^H NMR and UV-Vis spectroscopy. The results show a good agreement with the proposed structures. Their general properties were studied by DSC and TG and it's obvious that they show high glass transition temperatures (Tg〉200 ℃), good thermal stability with high decomposition temperatures (TD〉500℃) and excellent solubility. The mechanical behavior of these polymers suggested that they could be considered a new class of high-performance polymers.  相似文献   

20.
The novel cycloaliphatic epoxide 3,4‐epoxycyclohexylmethyl‐2′,3′‐epoxycyclohexyl ether ( II ) containing an unsymmetrical epoxycyclohexyl moiety linked via an ether bond, and its precursor 3‐cyclohexene‐1‐methyl‐2′‐cyclohexene ether ( I ) were synthesized. Their structure was confirmed by means of elemental analysis, FT‐IR and 1H NMR spectroscopy. Compared with commercial epoxide ERL‐4221, the newly synthesized epoxide II shows a higher epoxy value (0.85 eq/g) and lower viscosity (86 mpa·s/25°C). The cured product, based on epoxide II and curing agent hexahydro‐4‐methylphthalic anhydride (HMPA), showed higher glass transition temperature (162°C), higher storage modulus at the glass transition region (2.95 GPa), higher crosslinking density (1.60×10–3 mol/cm3) and a lower coefficient of thermal expansion (6.22×10–5/°C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号