首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed the photo‐crosslinkable hydrogel‐based 3D microfluidic device to culture neural stem cells (NSCs) and tumors. The photo‐crosslinkable gelatin methacrylate (GelMA) polymer was used as a physical barrier in the microfluidic device and collagen type I gel was employed to culture NSCs in a 3D manner. We demonstrated that the pore size was inversely proportional to concentrations of GelMA hydrogels, showing the pore sizes of 5 and 25 w/v% GelMA hydrogels were 34 and 4 μm, respectively. It also revealed that the morphology of pores in 5 w/v% GelMA hydrogels was elliptical shape, whereas we observed circular‐shaped pores in 25 w/v% GelMA hydrogels. To culture NSCs and tumors in the 3D microfluidic device, we investigated the molecular diffusion properties across GelMA hydrogels, indicating that 25 w/v% GelMA hydrogels inhibited the molecular diffusion for 6 days in the 3D microfluidic device. In contrast, the chemicals were diffused in 5 w/v% GelMA hydrogels. Finally, we cultured NSCs and tumors in the hydrogel‐based 3D microfluidic device, showing that 53–75% NSCs differentiated into neurons, while tumors were cultured in the collagen gels. Therefore, this photo‐crosslinkable hydrogel‐based 3D microfluidic culture device could be a potentially powerful tool for regenerative tissue engineering applications.  相似文献   

2.
Establishing the 3D microscale organization of cells has numerous practical applications, such as in determining cell fate (e.g., proliferation, migration, differentiation, and apoptosis) and in making functional tissue constructs. One approach to spatially pattern cells is by dielectrophoresis (DEP). DEP has characteristics that are important for cell manipulation, such as high accuracy, speed, scalability, and the ability to handle both adherent and non-adherent cells. However, widespread application of this method is largely restricted because there is a limited number of suitable hydrogels for cell encapsulation. To date, polyethylene glycol-diacrylate (PEG-DA) and agarose have been used extensively for dielectric patterning of cells. In this study, we propose gelatin methacrylate (GelMA) as a promising hydrogel for use in cell dielectropatterning because of its biocompatibility and low viscosity. Compared to PEG hydrogels, GelMA hydrogels showed superior performance when making cell patterns for myoblast (C2C12) and endothelial (HUVEC) cells as well as in maintaining cell viability and growth. We also developed a simple and robust protocol for co-culture of these cells. Combined application of the GelMA hydrogels and the DEP technique is suitable for creating highly complex microscale tissues with important applications in fundamental cell biology and regenerative medicine in a rapid, accurate, and scalable manner.  相似文献   

3.
《Electrophoresis》2017,38(9-10):1318-1324
We developed the photo‐crosslinkable hydrogel microfluidic co‐culture device to study photothermal therapy and cancer cell migration. To culture MCF7 human breast carcinoma cells and metastatic U87MG human glioblastoma in the microfluidic device, we used 10 w/v% gelatin methacrylate (GelMA) hydrogels as a semi‐permeable physical barrier. We demonstrated the effect of gold nanorod on photothermal therapy of cancer cells in the microfluidic co‐culture device. Interestingly, we observed that metastatic U87MG human glioblastoma largely migrated toward vascular endothelial growth factor (VEGF)‐treated GelMA hydrogel‐embedding microchannels. The main advantage of this hydrogel microfluidic co‐culture device is to simultaneously analyze the physiological migration behaviors of two cancer cells with different physiochemical motilities and study gold nanorod‐mediated photothermal therapy effect. Therefore, this hydrogel microfluidic co‐culture device could be a potentially powerful tool for photothermal therapy and cancer cell migration applications.  相似文献   

4.
Many properties in both healthy and pathological tissues are highly influenced by the mechanical properties of the extracellular matrix. Stiffness gradient hydrogels are frequently used for exploring these complex relationships in mechanobiology. In this study, the fabrication of a simple, cost‐efficient, and versatile system is reported for creation of stiffness gradients from photoactive hydrogels like gelatin‐methacryloyl (GelMA). The setup includes syringe pumps for gradient generation and a 3D printed microfluidic device for homogenous mixing of GelMA precursors with different crosslinker concentration. The stiffness gradient is investigated by using rheology. A co‐culture consisting of human adipose tissue‐derived mesenchymal stem cells (hAD‐MSCs) and human umbilical cord vein endothelial cells (HUVECs) is encapsulated in the gradient construct. It is possible to locate the stiffness ranges at which the studied cells displayed specific spreading morphology and migration rates. With the help of the described system, variable mechanical gradient constructs can be created and optimal 3D cell culture conditions can be experientially identified.  相似文献   

5.
In recent years, the microfluidic technique has been widely used in the field of tissue engineering. Possessing the advantages of large-scale integration and flexible manipulation, microfluidic devices may serve as the production line of building blocks and the microenvironment simulator in tissue engineering. Additionally, in microfluidic technique-assisted tissue engineering, various biomaterials are desired to fabricate the tissue mimicking or repairing structures (i.e., particles, fibers, and scaffolds). Among the materials, gelatin methacrylate (GelMA)-based hydrogels have shown great potential due to their biocompatibility and mechanical tenability. In this work, applications of GelMA hydrogels in microfluidic technique-assisted tissue engineering are reviewed mainly from two viewpoints: Serving as raw materials for microfluidic fabrication of building blocks in tissue engineering and the simulation units in microfluidic chip-based microenvironment-mimicking devices. In addition, challenges and outlooks of the exploration of GelMA hydrogels in tissue engineering applications are proposed.  相似文献   

6.
为避免物理交联明胶基水凝胶的热不稳定性,以及化学方法交联明胶基水凝胶存在的毒性,本文采用丙烯酰化的方法将甲基丙烯酸酐(MA)与明胶反应,在明胶分子链上引入双键结构,并且实现了紫外光照射引发甲基丙烯酰胺基明胶(GelMA)与聚乙二醇双丙烯酸酯(PEGDA)共聚交联制备水凝胶。研究了不同的MA加入量对明胶修饰度的影响,并对GelMA/PEGDA交联水凝胶理化性质进行了测试和分析。结果表明:体系中PEGDA含量增加,能释放更多的自由基,增加交联反应的活性和程度,使水凝胶形成更加致密的三维网络结构。并且GelMA/PEGDA交联水凝胶在37℃比GelMA交联水凝胶更加稳定。GelMA/PEGDA交联水凝胶将来有望成为组织工程的支架材料。  相似文献   

7.
3D platforms are important for monitoring tumor progression and screening drug candidates to eradicate tumors such as glioblastoma multiforme (GBM), a malignant type of human brain tumor. Here, a new strategy is reported that exploits visible‐light‐induced crosslinking of gelatin where the reaction is carried out in the absence of an additional crosslinker. Visible light‐induced crosslinking promotes the design of cancer microenvironment‐mimetic system without compromising the cell viability during the process and absence of crosslinker facilitates the synthesis of the unique construct. Suspension and spheroid‐based models of GBM are used to investigate cellular behavior, expression profiles of malignancy, and apoptosis‐related genes within this unique network. Furthermore, sensitivity to an anticancer drug, Digitoxigenin, treatment is investigated in detail. The data suggest that U373 cells, in sparse or spheroid form, have significantly decreased expressions of apoptosis‐activating genes, Bad, Puma, and Caspase‐3, and a high expression of prosurvival Bcl‐2 gene within GelMA hydrogels. Matrix‐metalloproteinase genes are also upregulated within GelMA, suggesting positive contribution of gels on extracellular remodeling of cancer cells. This unique photocurable gelatin holds great potential for clinical translation of cancer research through the analysis of 3D malignant cancer cell behavior, and hence for more efficient treatment methods for GBM.  相似文献   

8.
Side‐effects from allograft, limited bone stock, and site morbidity from autograft are the major challenges to traditional bone defect treatments. With the advance of tissue engineering, hydrogel injection therapy is introduced as an alternative treatment. Therapeutic drugs and growth factors can be carried by hydrogels and delivered to patients. Abaloparatide, as an analog of human recombinant parathyroid hormone protein (PTHrp) and an alternative to teriparatide, has been considered as a drug for treating postmenopausal osteoporosis since 2017. Since only limited cases of receiving abaloparatide with polymeric scaffolds have been reported, the effects of abaloparatide on pre‐osteoblast MC3T3‐E1 are investigated in this study. It is found that in vitro abaloparatide treatment can promote pre‐osteoblast MC3T3‐E1 cells’ viability, differentiation, and mineralization significantly. For the drug delivery system, 3D porous structure of the methacrylated gelatin (GelMA) hydrogel is found effective for prolonging the release of abaloparatide (more than 10 days). Therefore, injectable photo‐crosslinked GelMA hydrogel is used in this study to prolong the release of abaloparatide and to promote healing of defected bones in rats. Overall, data collected in this study show no contradiction and imply that Abaloparatide‐loaded GelMA hydrogel is effective in stimulating bone regeneration.  相似文献   

9.
Inkjet printing enables the mimicry of the microenvironment of natural complex tissues by patterning cells and hydrogels at a high resolution. However, the polymer content of an inkjet-printable bioink is limited as it leads to strong viscoelasticity in the inkjet nozzle. Here it is demonstrated that sonochemical treatment controls the viscoelasticity of a gelatin methacryloyl (GelMA) based bioink by shortening the length of polymer chains without causing chemical destruction of the methacryloyl groups. The rheological properties of treated GelMA inks are evaluated by a piezo-axial vibrator over a wide range of frequencies between 10 and 10 000 Hz. This approach enables to effectively increase the maximum printable polymer concentration from 3% to 10%. Then it is studied how the sonochemical treatment effectively controls the microstructure and mechanical properties of GelMA hydrogel constructs after crosslinking while maintaining its fluid properties within the printable range. The control of mechanical properties of GelMA hydrogels can lead fibroblasts more spreading on the hydrogels. A 3D cell-laden multilayered hydrogel constructs containing layers with different physical properties is fabrictated by using high-resolution inkjet printing. The sonochemical treatment delivers a new path to inkjet bioprinting to build microarchitectures with various physical properties by expanding the range of applicable bioinks.  相似文献   

10.
Bioinks play a key role in determining the capability of the biofabricatoin processes and the resolution of the printed constructs. Excellent biocompatibility, tunable physical properties, and ease of chemical or biological modifications of gelatin methacryloyl (GelMA) have made it an attractive choice as bioinks for biomanufacturing of various tissues or organs. However, the current preparation methods for GelMA‐based bioinks lack the ability to tailor their physical properties for desired bioprinting methods. Inherently, GelMA prepolymer solution exhibits a fast sol–gel transition at room temperature, which is a hurdle for its use in stereolithography (SLA) bioprinting. Here, synthesis parameters are optimized such as solvents, pH, and reaction time to develop GelMA bioinks which have a slow sol–gel transition at room temperature and visible light crosslinkable functions. A total of eight GelMA combinations are identified as suitable for digital light processing (DLP)‐based SLA (DLP‐SLA) bioprinting through systematic characterizations of their physical and rheological properties. Out of various types of GelMA, those synthesized in reverse osmosis (RO) purified water (referred to as RO‐GelMA) are regarded as most suitable to achieve high DLP‐SLA printing resolution. RO‐GelMA‐based bioinks are also found to be biocompatible showing high survival rates of encapsulated cells in the photocrosslinked gels. Additionally, the astrocytes and fibroblasts are observed to grow and integrate well within the bioprinted constructs. The bioink's superior physical and photocrosslinking properties offer pathways of tuning the scaffold microenvironment and highlight the applicability of developed GelMA bioinks in various tissue engineering and regenerative medicine applications.  相似文献   

11.
For tissue engineering of skeletal muscles, there is a need for biomaterials which do not only allow cell attachment, proliferation, and differentiation, but also support the physiological conditions of the tissue. Next to the chemical nature and structure of the biomaterial, its response to the application of biophysical stimuli, such as mechanical deformation or application of electrical pulses, can impact in vitro tissue culture. In this study, gelatin methacryloyl (GelMA) is modified with hydrophilic 2-acryloxyethyltrimethylammonium chloride (AETA) and 3-sulfopropyl acrylate potassium (SPA) ionic comonomers to obtain a piezoionic hydrogel. Rheology, mass swelling, gel fraction, and mechanical characteristics are determined. The piezoionic properties of the SPA and AETA-modified GelMA are confirmed by a significant increase in ionic conductivity and an electrical response as a function of mechanical stress. Murine myoblasts display a viability of >95% after 1 week on the piezoionic hydrogels, confirming their biocompatibility. The GelMA modifications do not influence the fusion capacity of the seeded myoblasts or myotube width after myotube formation. These results describe a novel functionalization providing new possibilities to exploit piezo-effects in the tissue engineering field.  相似文献   

12.
In this study, the cyto‐compatibility and cellular functionality of cell‐laden gelatin‐methacryloyl (Gel‐MA) hydrogels fabricated using a set of photo‐initiators which absorb in 400–450 nm of the visible light range are investigated. Gel‐MA hydrogels cross‐linked using ruthenium (Ru) and sodium persulfate (SPS), are characterized to have comparable physico‐mechanical properties as Gel‐MA gels photo‐polymerized using more conventionally adopted photo‐initiators, such as 1‐[4‐(2‐hydroxyethoxy)‐phenyl]‐2‐hydroxy‐2‐methyl‐1‐propan‐1‐one (Irgacure 2959) and lithium phenyl(2,4,6‐trimethylbenzoyl) phosphinate (LAP). It is demonstrated that the Ru/SPS system has a less adverse effect on the viability and metabolic activity of human articular chondrocytes encapsulated in Gel‐MA hydrogels for up to 35 days. Furthermore, cell‐laden constructs cross‐linked using the Ru/SPS system have significantly higher glycosaminoglycan content and re‐differentiation capacity as compared to cells encapsulated using I2959 and LAP. Moreover, the Ru/SPS system offers significantly greater light penetration depth as compared to the I2959 system, allowing thick (10 mm) Gel‐MA hydrogels to be fabricated with homogenous cross‐linking density throughout the construct. These results demonstrate the considerable advantages of the Ru/SPS system over traditional UV polymerizing systems in terms of clinical relevance and practicability for applications such as cell encapsulation, biofabrication, and in situ cross‐linking of injectable hydrogels.  相似文献   

13.
Light‐induced release systems can be triggered remotely and are of interest for many controlled release applications due to the possibility for spatio‐temporal release control. In this study a biotin‐functionalized photocleavable macromer is incorporated with an o‐nitrobenzyl moiety into gelatin methacryloyl(‐acetyl) hydrogels via radical cross‐linking. Stronger immobilization of streptavidin‐coupled horseradish peroxidase occurs in linker‐functionalized hydrogels compared to pure gelatin methacryloyl(‐acetyl) hydrogels, and a controlled release of the streptavidin conjugate upon UV‐irradiation is possible. Liquid chromatography coupled to mass spectrometry (LC‐MS) analysis of aqueous linker solutions allows the identification of the main cleavage products and the cleavage kinetics. Thus, it is shown that a significant hydrolysis of the linker occurs at 37 °C. Nevertheless the system reported here is a promising controlled release scaffold for proteins and application in tissue engineering, if background releases of the immobilized drug are tolerable.  相似文献   

14.
We described the curcumin‐loaded biodegradable polyurethane (PU) scaffolds modified with gelatin based on three‐dimensional (3D) printing technology for potential application of cartilage regeneration. The printing solution of poly(ε‐caprolactone) (PCL) triol (polyol) and hexamethylene diisocyanate (HMDI) in 2,2,2‐trifluoroethanol was printed through a nozzle in dimethyl sulfoxide phase with or without gelatin. The weight ratio of HMDI against PCL triol was varied as 3, 5, and 7 in order to evaluate its effect on the mechanical properties and biodegradation rate. A higher ratio of HMDI resulted in higher mechanical properties and a lower biodegradation rate. The use of gelatin increased the mechanical properties, biodegradation rate, and curcumin release due to the surface cross‐linking, nanoporous structure, and surface hydrophilicity of the scaffolds. In vitro study revealed that the released curcumin enhanced the proliferation and differentiation of chondrocyte. The 3D‐printed biodegradable PU scaffold modified with gelatin should thus be considered as a potential candidate for cartilage regeneration.  相似文献   

15.
Rational design and development of tailorable simple synthesis process remains a centerpiece of investigational efforts toward engineering advanced hydrogels. In this study, a green and scalable synthesis approach is developed to formulate a set of gelatin‐based macroporous hybrid hydrogels. This approach consists of four sequential steps starting from liquid‐phase pre‐crosslinking/grafting, unidirectional freezing, freeze‐drying, and finally post‐curing process. The chemical crosslinking mainly involves between epoxy groups of functionalized polyethylene glycol and functional groups of gelatin both in liquid and solid state. Importantly, this approach allows to accommodate different polymers, chitosan or hydroxyethyl cellulose, under identical benign condition. Structural and mechanical anisotropy can be tuned by the selection of polymer constituents. Overall, all hydrogels show suitable structural stability, good swellability, high porosity and pore interconnectivity, and maintenance of mechanical integrity during 3‐week‐long hydrolytic degradation. Under compression, hydrogels exhibit robust mechanical properties with nonlinear elasticity and stress‐relaxation behavior and show no sign of mechanical failure under repeated compression at 50% deformation. Biological experiment with human bone marrow mesenchymal stromal cells (hMSCs) reveals that hydrogels are biocompatible, and their physicomechanical properties are suitable to support cells growth, and osteogenic/chondrogenic differentiation, demonstrating their potential application for bone and cartilage regenerative medicine toward clinically relevant endpoints.  相似文献   

16.
Chondrocytes are important for cartilage tissue engineering. However, dedifferentiation during chondrocyte subculture prevents the application of cartilage tissue engineering. Therefore, prevention of this dedifferentiation is required. Here, the possibility of poly(2‐methoxyethyl acrylate) (PMEA) and its analogous polymers, poly(tetrahydrofurfuryl acrylate) (PTHFA) and poly(2‐(2‐methoxyethoxy) ethyl acrylate‐co‐butyl acrylate) (PMe2A), for chondrocyte subculture without dedifferentiation is examined. Chondrocytes spread on PTHFA and polyethylene terephthalate (PET), whereas their spreading is delayed on PMEA and PMe2A. When primary chondrocytes are subcultured on these polymers, the expression levels of cartilaginous genes are higher on PMEA and PMe2A than on PET and PTHFA. Integrin contribution to the initial cell adhesion is lower on PMEA and PMe2A than on PTHFA and PET. This low level of integrin contribution to cell adhesion may cause a delay in cell spreading and the maintenance of cartilaginous gene expression. These results indicate that PMEA and PMe2A may be favorable substrates for chondrocyte subculture and cartilage tissue engineering.  相似文献   

17.
Injectable hydrogels with biodegradability have in situ formability which in vitro/in vivo allows an effective and homogeneous encapsulation of drugs/cells, and convenient in vivo surgical operation in a minimally invasive way, causing smaller scar size and less pain for patients. Therefore, they have found a variety of biomedical applications, such as drug delivery, cell encapsulation, and tissue engineering. This critical review systematically summarizes the recent progresses on biodegradable and injectable hydrogels fabricated from natural polymers (chitosan, hyaluronic acid, alginates, gelatin, heparin, chondroitin sulfate, etc.) and biodegradable synthetic polymers (polypeptides, polyesters, polyphosphazenes, etc.). The review includes the novel naturally based hydrogels with high potential for biomedical applications developed in the past five years which integrate the excellent biocompatibility of natural polymers/synthetic polypeptides with structural controllability via chemical modification. The gelation and biodegradation which are two key factors to affect the cell fate or drug delivery are highlighted. A brief outlook on the future of injectable and biodegradable hydrogels is also presented (326 references).  相似文献   

18.
Hyaluronic acid (HA), a naturally occurring linear polysaccharide, has been widely used as a key biomaterial in a range of cosmetic and therapeutic applications. Its excellent biocompatibility and bio‐functions related to tissue regeneration encourage the development of HA‐based hydrogels to expand its applications. This study details an in situ forming surgical glue based on photocrosslinkable HA, providing tunable mechanical properties and firm tissue adhesion under wet and dynamic conditions. Depending on the degree of photocrosslinkable methacrylate groups in HA polymer chains, the mechanical properties of hyaluronate methacrylate (HAMA) hydrogels prepared by UV photocrosslinking was improved. Ex vivo adhesion tests revealed that HAMA hydrogels exhibited 3‐fold higher shear adhesive strength compared to gelatin methacryloyl hydrogels and achieved firm adherence to the porcine skin tissue for several weeks. The high adhesive strength of HAMA hydrogels, under dry and wet conditions, suggests that it may have great promise as a tissue adhesive. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 522–530  相似文献   

19.
The hierarchical structure of gelatin hydrogels mimics a natural extracellular matrix and provides an optimized microenvironment for the growth of 3D structured tissue analogs. In the presence of metal ions, gelatin hydrogels exhibit various mechanical properties that are correlated with the molecular interactions and the hierarchical structure. The structure and structural response of gelatin hydrogels to variation of gelatin concentration, pH, or addition of metal ions are explored by small and very small angle neutron scattering over broad length scales. The measurements of the hydrogels reveal the existence of a two‐level structure of colloid‐like large clusters and a 3D cage‐like gel network. In the presence of Fe3+ ions the hydrogels show a highly dense and stiff network, while Ca2+ ions have an opposite effect. The results provide important structural insight for improvement of the design of gelatin based hydrogels and are therefore suitable for various applications.  相似文献   

20.
In cartilage regeneration, the biomimetic functionalization of hydrogels with growth factors is a promising approach to improve the in vivo performance and furthermore the clinical potential of these materials. In order to achieve this without compromising network properties, multifunctional linear poly(glycidol) acrylate (PG‐Acr) is synthesized and utilized as crosslinker for hydrogel formation with thiol‐functionalized hyaluronic acid via Michael‐type addition. As proof‐of‐principle for a bioactivation, transforming growth factor‐beta 1 (TGF‐β1) is covalently bound to PG‐Acr via Traut's reagent which does not compromise the hydrogel gelation and swelling behavior. Human mesenchymal stromal cells (MSCs) embedded within these bioactive hydrogels show a distinct dose‐dependent chondrogenesis. Covalent incorporation of TGF‐β1 significantly enhances the chondrogenic differentiation of MSCs compared to hydrogels with supplemented noncovalently bound TGF‐β1. The observed chondrogenic response is similar to standard cell culture with TGF‐β1 addition with each medium change. In general, multifunctional PG‐Acr offers the opportunity to introduce a range of biomimetic modifications (peptides, growth factors) into hydrogels and, thus, appears as an attractive potential material for various applications in regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号