首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniform nano-sized calcium hydroxide (Ca(OH)2) monocrystal powder was synthesized from calcium oxide in a surfactant solution via a digestion method by decreasing the surface tension of the reaction system to control the growth of crystalline Ca(OH)2. The Ca(OH)2 monocrystal powder samples were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), and Fourier transform-infrared spectroscopy (FT-IR). The NOx adsorption ability of the samples was evaluated, and the influence of various types and concentrations of surfactants on powder agglomeration and then the specific surface area in the precipitation process were studied. The specific surface area of the samples was found as high as 58 m2/g and 92 m2/g and the particle size, 300–400 nm and 200–300 nm in the presence of 10 wt% PEG600 and 0.086 mL/L SDS at a reaction time of 5 h, respectively. The product has an exceptionally strong adsorption ability for NOx, which makes it a highly promising adsorbent for emission control and air purification.  相似文献   

2.
Previously we had developed a microfluidic system that can be easily fabricated by bending a stainless-steel tube into large circular loops. In this study, a fast and continuous preparation method for superfine TiO2 nanoparticles (TiO2-NPs) was developed for the aforementioned microfluidic system. The proposed method can yield anatase TiO2 in 3.5 min, in contrast to the traditional hydrothermal reaction method, which requires hours or even days. Different reaction conditions, such as reaction temperature (120–200 °C), urea concentration (20–100 g/L), and tube length (5–20 m) were investigated. X-ray diffraction and Brunauer–Emmett–Teller analysis indicate that the as-prepared TiO2-NPs have crystalline sizes of 4.1–5.8 nm and specific surface areas of 250.7–330.7 m2/g. Transmission electron microscopy images show that these TiO2-NPs have an even diameter of approximately 5 nm. Moreover, because of their small crystalline sizes and large specific surface areas, most of these as-prepared TiO2-NPs exhibit considerably better absorption and photocatalytic performance with methylene blue than commercial P5 TiO2 does.  相似文献   

3.
In this article, the Capuli (Prunus serotina Ehrh. var. Capuli) cherry extract was used for the synthesis of silver nanoparticles (AgNPs) in the presence of white/visible solar and blue light-emitting diode (LED) light. For the characterization of the extract and the AgNPs, Fourier transform infrared spectroscopy and ultraviolet–visible spectroscopy were employed, along with hydrodynamic particle size analysis, transmission electron microscopy and X-ray diffraction. The Ag nanospheres obtained using white light were 40–100 nm in diameter and exhibited an absorption peak at λmax = 445 nm, whereas those obtained using blue LED light were 20–80 nm in diameter with an absorption peak at λmax = 425 nm. Thermal analysis revealed that the content of biomolecules surrounding the AgNPs was about 55–65%, and it was also found that blue LED light AgNPs (56.28%, 0.05 mM) had a higher antioxidant efficacy than the white solar light AgNPs (33.42%, 0.05 mM) against 1,1-diphenyl-2-picrylhydrazyl. The results indicate that obtaining AgNPs using a blue LED light may prove to be a simple, cost-effective and easily reproducible method for creating future nanopharmaceuticals.  相似文献   

4.
Potassium sodium niobate (KNN) powders were synthesized by a modified sol–gel method, using as starting chemicals potassium carbonate, sodium carbonate, and niobium hydroxide, and, as esterification and chelating agents, respectively, ethylene glycol (EG) and ethylene diamine tetraacetic acid (EDTA)/citrate. The effects of citric acid (CA), EG, and EDTA on the stability of the precursor sol were systemically investigated. The powders and gels were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis-differential scanning calorimetry (TGA-DSC). The results indicated that a stable precursor sol was formed when n(CA):n(Mn+) = 3:1, n(EDTA):n(NH4OH) = 1:3.5, and n(CA):n(EG) = 1:2. The xerogel was calcined at 500–950 °C to prepare the KNN powder. Pure KNN perovskite phase with a cube-like structure was synthesized at 850 °C from the precursor sol for a K/Na molar ratio of 1.2. The formation mechanism of the KNN perovskite phase was also discussed.  相似文献   

5.
Nanocrystalline Mn-Zn ferrites (Mno.GZno.4Fe204) with particle size of 12 nm were synthesized hydrotherreally using spent alkaline Zn-Mn batteries, and accompanied by a study of the influencing factors. The nanocrystals were examined by powder X-ray diffraction (XRD) for crystalline phase identification, and scanning electron microscopy (SEM) for grain morphology. The relationship between concentration of Fe(II), Mn(II), and Zn(II) and pH value was obtained through thermodynamic analysis of the Fe(II)-Mn(II)-Zn(II)-NaOH-H2O system. The results showed that all ions were precipitated completely at a pH value of 10-11. The optimal preparation conditions are: co-precipitation pH of 10.5, temperature of 200 ℃ and time of 9 h.  相似文献   

6.
Mesoporous γ-AlOOH@Fe3O4 magnetic nanomicrospheres were synthesized using superparamagnetic Fe3O4 nanoparticles as the core and aluminum isopropoxide (AIP) as the aluminum source. The obtained magnetic nanomicrospheres were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption–desorption and vibrating sample magnetometry (VSM). The effects of preparation parameters such as hydrolysis time of AIP, concentration of AIP and coating layer number on microspheres were investigated. The results indicated that the mesoporous γ-AlOOH@Fe3O4 magnetic nanomicrospheres consisted of a mesoporous γ-AlOOH shell and a Fe3O4 magnetic core. The diameter of γ-AlOOH@Fe3O4 nanomicrospheres was about 200 nm, the thickness of mesoporous γ-AlOOH shell was about 5 nm and the average pore size was 3.8 nm. The thickness of the mesoporous γ-AlOOH shell could be controlled via layer-by-layer coating times. The formation mechanism of the mesoporous γ-AlOOH shell involved a “chemisorption–hydrolysis” process.  相似文献   

7.
Flame spray pyrolysis (FSP) was utilized to synthesize Ce–Mn oxides in one step for catalytic oxidation of benzene. Cerium acetate and manganese acetate were used as precursors. The materials synthesized were characterized using X-ray diffraction (XRD), N2 adsorption, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, and H2-temperature programmed reduction (H2-TPR) and their benzene catalytic oxidation behavior was evaluated. Mn ions were evidenced in multiple chemical states. Crystalline Ce–Mn oxides consist of particles with size <40 nm and specific surface areas (SSA) of 20–50 m2/g. Raman spectrums and H2-TPR results indicated the interaction between cerium and manganese oxides. Flame-made 12.5%-Ce–Mn oxide exhibited excellent catalytic activity at relatively low temperatures (T95 about 260 °C) compared to other Ce–Mn oxides with different cerium-to-manganese ratios. Redox mechanism and strong interaction conform to structure analysis that Ce–Mn strong interaction formed during the high temperature flame process and the results were used to explain catalytic oxidation of benzene.  相似文献   

8.
We synthesized LiMnPO4/C with an ordered olivine structure by using a microwave-assisted polyol process in 2:15 (v/v) water–diethylene glycol mixed solvents at 130 °C for 30 min. We also studied how three surfactants—hexadecyltrimethylammonium bromide, polyvinylpyrrolidone k30 (PVPk30), and polyvinylpyrrolidone k90 (PVPk90)—affected the structure, morphology, and performance of the prepared samples, characterizing them by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge/discharge tests, and electrochemical impedance spectroscopy. All the samples prepared with or without surfactant had orthorhombic structures with the Pnmb space group. Surfactant molecules may have acted as crystal-face inhibitors to adjust the oriented growth, morphology, and particle size of LiMnPO4. The microwave effects could accelerate the reaction and nucleation rates of LiMnPO4 at a lower reaction temperature. The LiMnPO4/C sample prepared with PVPk30 exhibited a flaky structure coated with a carbon layer (∼2 nm thick), and it delivered a discharge capacity of 126 mAh/g with a capacity retention ratio of ∼99.9% after 50 cycles at 1C. Even at 5C, this sample still had a high discharge capacity of 110 mAh/g, demonstrating good rate performance and cycle performance. The improved performance of LiMnPO4 likely came from its nanoflake structure and the thin carbon layer coating its LiMnPO4 particles. Compared with the conventional polyol method, the microwave-assisted polyol method had a much lower reaction time.  相似文献   

9.
Hierarchical sea-urchin-shaped manganese oxide microspheres were synthesized via a facile method based on the reaction between KMnO4 and MnSO4 in HNO3 solution at 50 °C. The average diameter of the microspheres is ∼850 nm. The microspheres consist of a core of diameter of ∼800 nm and nanorods of width ∼50 nm. The nanorods exist at the edge of the core. The Brunauer–Emmett–Teller surface area of the sea-urchin-shaped microspheres is 259.4 m2/g. A possible formation mechanism of the hierarchical sea-urchin-shaped microspheres is proposed. The temperature for 90% conversion of benzene (T90%) on the hierarchical urchin-shaped MnO2 microspheres is about 218 °C.  相似文献   

10.
Precursors with NiCO3·2Ni(OH)2·2H2O- and Fe2O3·nH2O-coated alumina, graphite and cenosphere were synthesized by precipitation using ferrous sulfate, nickel sulfate, ammonium bicarbonate, alumina, graphite and cenosphere as the main starting materials. Magnetic γ-FeNi-coated alumina, graphite and cenosphere core–shell structural microspheres were subsequently prepared by thermal reduction of the as-prepared precursors at 600 °C for 2 h. Precipitation parameters, e.g. concentration of ceramic micropowders (10 g/L), sulfate solution (0.2 mol/L), rate of adding reactants (3 mL/min) and pH value were optimized by a trial-and-error method. Powders of the precursors and the resulting coating of γ-FeNi with grain size below 40 nm on alumina, graphite and cenosphere microspheres were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The magnetic properties of the nanosize γ-FeNi-coated alumina, graphite and cenosphere microspheres were measured by vibrating sample magnetometer (VSM). The results show that the core–shell structural γ-FeNi-coated ceramic microspheres exhibited higher coercivity than pure γ-FeNi powders, indicating that these materials can be used for high-performance functional materials and devices.  相似文献   

11.
ZnO nanoparticles, 10–20 nm in size, were synthesized by heat treatment in air at 500 °C for 5 h., using [N,N′-bis(salicylaldehydo) ethylene diamine]zinc(II), i.e., Zn(salen), as precursor, which was obtained by a solvent-free solid–solid reaction. Heat-treated products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. Room temperature photoluminescence spectra of ZnO nanostructures are dominated by green emission attributed to oxygen vacancy related donor–acceptor transition.  相似文献   

12.
M-Band and L-Band Gold spectra between 3 and 5 keV and 8 and 13 keV, respectively, have been recorded by a photometrically calibrated crystal spectrometer. The spectra were emitted from the plasma in the laser deposition region of a ‘hot hohlraum’. This is a reduced-scale hohlraum heated with ≈9 kJ of 351 nm light in a 1 ns square pulse at the OMEGA laser. The space- and time-integrated spectra included L-Band line emission from Co-like to Ne-like gold. The three L-Band line features were identified to be the 3s  2p, 3d5/2  2p3/2 and 3d3/2  2p1/2 transitions at ≈9 keV, ≈10 keV and ≈13 keV, respectively. M-Band 5f  3d, 4d  3p, and 4p  3s transition features from Fe-like to P-like gold were also recorded between 3 and 5 keV. Modeling from the radiation–hydrodynamics code LASNEX, the collisional-radiative codes FLYCHK and SCRAM, and the atomic structure code FAC were used to model the plasma and generate simulated spectra for comparison with the recorded spectra. Through these comparisons, we have determined the average electron temperature of the emitting plasma to be between 6.0 and 6.5 keV. The electron temperatures predicted by LASNEX appear to be too large by a factor of about 1.5.  相似文献   

13.
The FLASH XUV-free electron laser has been used to irradiate solid samples at intensities of the order 1016 W cm?2 at a wavelength of 13.5 nm. The subsequent time integrated XUV emission was observed with a grating spectrometer. The electron temperature inferred from plasma line ratios was in the range 5–8 eV with electron density in the range 1021–1022 cm?3. These results are consistent with the saturation of absorption through bleaching of the L-edge by intense photo-absorption reported in an earlier publication.  相似文献   

14.
Uniform rhombohedral α-Fe2O3 nanoparticles, ~60 nm in size, were synthesized via a triphenylphosphine-assisted hydrothermal method. Scanning electron micrograph (SEM) and transmission electron micrograph (TEM) analyses showed that the as-synthesized rhombohedral nanoparticles were enclosed by six (1 0 4) planes. The concentration of triphenylphosphine played an important role in morphological evolution of the α-Fe2O3 nanoparticles. The as-prepared rhombohedral nanoparticles possessed remanent magnetization Mr of 2.6 × 10?3 emu/g and coercivity HC of 2.05 Oe, both lower than those of other α-Fe2O3 particles with similar size, indicating their potential applications as superparamagnetic precursor materials. Furthermore, these rhombohedral α-Fe2O3 nanoparticles exhibited good sensor capability toward H2O2 with a linear response in the concentration range of 2–20 mM.  相似文献   

15.
Lithium iron phosphate (LiFePO4)/lithium manganese phosphate (LiMnPO4)-positive material was successfully prepared through ball milling and high-temperature sintering using manganese acetate, lithium hydroxide, ammonium dihydrogen phosphate, and ferrous oxalate as raw materials. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, a constant current charge–discharge test, cyclic voltammetry, and electrochemical impedance spectroscopy. The effects of lithium iron phosphate coating were also discussed. Because of its special core–shell structure, the as-prepared LiMn0.7Fe0.3PO4–LiFePO4–C exhibits excellent electrochemical performance. The discharge capacity reached 136.6 mAh/g and the specific discharge energy reached 506.9 Wh/kg at a rate of 0.1 C.  相似文献   

16.
Multi-doped spinels, namely LiMn2O4 and LiZnxHoyMn2−xyO4 (x = 0.10–0.18; y = 0.02–0.10), for use as cathode materials for lithium-ion rechargeable batteries were synthesized via sol–gel method, using lauric acid as the chelating agent, to obtain micron-sized particles. The physical properties of the synthesized samples were investigated using differential thermal analysis, Fourier-transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy, energy-dispersive X-ray analysis, and electrochemical methods. XRD showed that LiMn2O4 and LiZnxHoyMn2−xyO4 have high degrees of crystallinity and good phase purities. The SEM images of LiMn2O4 showed an ice-cube morphology with particles of size 1 μm. Charge–discharge studies showed that undoped LiMn2O4 delivered the discharge capacity of 124 mA h/g with coulombic efficiency of 95% during the first cycle, whereas doped spinels delivered discharge capacities of 125, 120, and 127 mA h/g in the first cycle with coulombic efficiencies of 96%, 91%, and 91%, respectively.  相似文献   

17.
The influence of Na2HPO4·12H2O on the hydrothermal formation of hemihydrate calcium sulfate (CaSO4·0.5H2O) whiskers from dihydrate calcium sulfate (CaSO4·2H2O) at 135 °C was investigated. Experimental results indicate that the addition of phosphorus accelerates the hydrothermal conversion of CaSO4·2H2O to CaSO4·0.5H2O via the formation of Ca3(PO4)2 and produces CaSO4·0.5H2O whiskers with thinner diameters and shorter lengths. Compared with the blank experiment without Na2HPO4·12H2O, the existence of minor amounts (8.65 × 10−4–4.36 × 10−3 mol/L) of Na2HPO4·12H2O led to a decrease in the diameter of CaSO4·0.5H2O whiskers from 1.0–10.0 to 0.5–2.0 μm and lengths from 70–300 to 50–200 μm.  相似文献   

18.
Nickel hydroxide, Ni(OH)2 is widely used in electrodes of nickel-based alkaline secondary batteries. Ultrathin hexagonal Ni(OH)2 nanosheets of space group P-3m1 were hydrothermally prepared at 200 °C for 10 h. Their diameter and thickness were 200–300 and 3–5 nm, respectively. Their formation was attributed to the oriented assembly of growing particles, which was assisted by surfactant molecules. The specific surface area of the Ni(OH)2 nanosheets was 8.66 m2/g. Their magnetization curve exhibited linear paramagnetic behavior across the entire measurement region.  相似文献   

19.
A simple sol–gel route was demonstrated for the synthesis of LiNb0.6Ti0.5O3 (M-phase) powder, using cheap and manageable starting materials at a relatively low temperature. The phase transitions in both chemical and solid-state processes were studied by X-ray diffraction (XRD) in detail. The results showed that in the sol–gel process the anatase TiO2 phase first appeared at 400 °C and then LiNbO3 solid solution (LiNbO3 ss) emerged at 500 °C. When calcined to 600 °C, the M-phase started to appear along with the decrease of TiO2 and LiNbO3 ss. Single M-phase could be formed at 700 °C, which is 300 °C lower than that by the traditional solid-state method. A plausible evolution mechanism of the as-synthesized powder in calcination was proposed. The produced powder has potential applications in microelectronics systems.  相似文献   

20.
Highly uniform Ce(OH)CO3 flowers were successfully prepared in large quantities using a facile hydrothermal approach from the reaction of Ce(NH4)(NO3)4 with CO(NH2)2 at 160 °C in a water–N2H4 complex. The influences of the N2H4 content and temperature on flower formation were discussed. CeO2 flowers were prepared by thermal conversion of Ce(OH)CO3 flowers at 500 °C in air. Both Ce(OH)CO3 and CeO2 flowers were characterized by X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). The UV–vis adsorption spectrum of the CeO2 flowers showed that the band gap energy (Eg) is 2.66 eV, which is lower than that of bulk ceria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号