首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A superstructured tetraphenylporphyrin with a covalently attached proximal imidazole axial base and three distal imidazole pickets has been developed as a model for the active site of terminal oxidases such as cytochrome c oxidase. The oxygen adduct of the Fe-only heme (at low temperature) has a diamagnetic NMR and is EPR silent, which taken together with a resonance Raman oxygen isotope sensitive band (nuFe-O) at 575/554 cm-1 (16O2/18O2) indicates formation of a six-coordinate heme-superoxide complex. Unexpectedly, the Fe/Cu complex, where the copper is in a trisimidazole environment approximately 5 A above the heme plane, displays similar characteristics: a diamagnetic NMR, EPR silence, and nuFe-O at 570/544 cm-1. This indicates the dioxygen adduct of this Fe/Cu system is also a superoxide. This contrasts with previously characterized partially reduced dioxygen intermediates of binuclear heme/copper complexes that form Fe/Cu mu-peroxo complexes.  相似文献   

2.
Three biomimetic models for the binuclear Fe/Cu (heme/trisimidazole) active site of terminal oxidases, such as cytochrome c oxidase and related enzymes, have been prepared. Based upon a tetrakis(aminophenyl)porphyrin core, these models possess a single covalently linked imidazole-bearing tail on one side of the porphyrin and three imidazole "pickets" on the opposite side of the porphyrin ring. Three different imidazole picket motifs are characterized in free base, Fe, Zn, Fe/Cu, and Zn/Cu forms. A combination of NMR, EPR, and IR demonstrates that, for the N-methylimidazole systems studied, the distal Cu is bound within the trisimidazole environment in the reduced (Cu(I)) and oxidized (Cu(II)) forms. The imidazole picket substitution pattern and state of metalation have significant influence on the interaction of these compounds with CO. For imidazole picket systems containing NH groups, intramolecular H bonds compete with Cu(I) coordination of the N donors.  相似文献   

3.
We report the exceptional reactivity towards dioxygen of a nanostructured organic-inorganic hybrid material due to the confinement of copper cyclam within a silica matrix. The key step is the metalation reaction of the ligand, which can occur before or after xerogel formation through the sol-gel process. The incorporation of a Cu(II) center into the material after xerogel formation leads to a bridged Cu(I)/Cu(II) mixed-valence dinuclear species. This complex exhibits a very high affinity towards dioxygen, attributable to auto-organization of the active species in the solid. The remarkable properties of these copper complexes in the silica matrix demonstrate a high cooperative effect for O(2) adsorption; this is induced by close confinement of the two copper ions leading to end-on mu-eta(1):eta(1)-peroxodicopper(II) complexes. The anisotropic packing of the tetraazamacrocycle in a lamellar structure induces an exceptional reactivity of these copper complexes. We show for the first time that the organic-inorganic environment of copper complexes in a silica matrix fully model the protecting role of protein in metalloenzymes. For the first time an oxygenated dicopper(II) complex can be isolated in a stable form at room temperature, and the reduced Cu(2) (I,I) species can be regenerated after several adsorption-desorption cycles. These data also demonstrate that the coordination scheme and reactivity of the copper cyclams within the solid are quite different from that observed in solution.  相似文献   

4.
Water-soluble cobalt porphyrin 1Co and imidazole ligand 2 were synthesized. 1Co binds dioxygen in the presence of imidazole ligand 2 in aqueous solution. The formation of the oxygen adduct 2-1Co(O(2)) was studied using UV-vis and EPR spectroscopy. The impact of pH on the kinetic stability of the oxygen adduct was examined.  相似文献   

5.
Several Cu(II) complexes with ACC (=1-aminocyclopropane carboxylic acid) or AIB (=aminoisobutyric acid) were prepared using 2,2'-bipyridine, 1,10-phenanthroline, and 2-picolylamine ligands: [Cu(2,2'-bipyridine)(ACC)(H2O)](ClO4) (1a), [Cu(1,10-phenanthroline)(ACC)](ClO4) (2a), [Cu(2-picolylamine)(ACC)](ClO4) (3a), and [Cu(2,2'-bipyridine)(AIB)(H2O)](ClO4) (1b). All of the complexes were characterized by X-ray diffraction analysis. The Cu(II)-ACC complexes are able to convert the bound ACC moiety into ethylene in the presence of hydrogen peroxide, in an "ACC-oxidase-like" activity. A few equivalents of base are necessary to deprotonate H2O2 for optimum activity. The presence of dioxygen lowers the yield of ACC conversion into ethylene by the copper(II) complexes. During the course of the reaction of Cu(II)-ACC complexes with H2O2, brown species (EPR silent and lambda max approximately 435 nm) were detected and characterized as being the Cu(I)-ACC complexes that are obtained upon reduction of the corresponding Cu(II) complexes by the deprotonated form of hydrogen peroxide. The geometry of the Cu(I) species was optimized by DFT calculations that reveal a change from square-planar to tetrahedral geometry upon reduction of the copper ion, in accordance with the observed nonreversibility of the redox process. In situ prepared Cu(I)-ACC complexes were also reacted with hydrogen peroxide, and a high level of ethylene formation was obtained. We propose Cu(I)-OOH as a possible active species for the conversion of ACC into ethylene, the structure of which was examined by DFT calculation.  相似文献   

6.
The reactivity of the metalloporphyrins was closely related to their ligand effect at axial position. The electronic properties of six model Co(II) porphyrins are investigated by spectral and electrochemical methods. Structural parameters of the Co(II) complexes are directly obtained from their crystal structures. We demonstrate that the unpaired 3d electron of low‐spin Co(II) ions in nonplanar Co(II) porphyrin complexes activated by core contraction of porphyrin macrocycles can be further activated by the axial ligation of imidazole. The activated electron can combine with a π orbital of the porphyrin ring to form a new d‐π orbital, which can induce the Q‐band of Co(II) porphyrins to visibly split. Addition of imidazole causes the Co(II)/Co(III) and Co(II)/Co(I) reactions to shift to more negative potential. Our results indicate that strong axial ligation and core contraction both play important roles in electron transfer in redox catalysis involving Co(II) complexes.  相似文献   

7.
Bis(pyridine)(9,10-phenanthrenequinone)(9,10-phenanthrenediolato)copper(II), Cu(py)(2)(PhenCat)(PhenBQ), has been prepared by treating copper metal with 9,10-phenanthrenequinone in pyridine solution. In dilute solution, both Cu(py)(2)(PhenCat)(PhenBQ) and the related complex Cu(tmeda)(PhenCat)(PhenBQ) lose PhenBQ to form Cu(II)L(2)(PhenCat), where L(2)= tmeda, 2 py. EPR spectra recorded at temperatures between 300 and 77 K reveal the presence of species with radical and metal localized spins together at equilibrium. Equilibria between Cu(II)L(2)(PhenCat) and Cu(I)L(2)(PhenSQ) redox isomers are solvent dependent, with a shift to higher temperature for polar solvents. Both complexes are oxygen sensitive, reacting with dioxygen to give complexes of diphenic acid. Structural characterization on products obtained with tmeda show that dioxygen insertion across the C-C bond within the chelate ring leads to dimeric products with adjacent Cu(II) ions bridged by diphenate ligands. The addition of O(2) to Cu(tmeda)(PhenCat) in acetonitrile solution at 0 degrees C appears to form a peroxo complex, tentatively identified as Cu(tmeda)(O(2))(PhenQ) on the basis of iodometric titration, as the precursor to the diphenate complex.  相似文献   

8.
The copper(I) complexes of diphenylglycoluril basket receptors and , appended with bis(2-ethylpyridine)amine (PY2) and tris(2-methylpyridine)amine (TPA), respectively, and their dioxygen adducts were studied with low-temperature UV-vis and X-ray absorption spectroscopy (XAS). The copper(I) complex of, [.Cu(I)2] or, forms a micro-eta2:eta2 dioxygen complex, whereas the copper(I) complex of, [.Cu(I)2] or, does not form a well defined dioxygen complex, but is oxidized to Cu(II). Dioxygen is bound irreversibly to and the formed complex is stable over time. The coordination geometries of the above complexes were determined by XAS, which revealed that pyridyl groups and amine N-donors participate in the coordination to Cu(I) ions in the complexes of both receptors. The catalytic activities of various metal complexes of and , that were designed as mimics of dinuclear copper enzymes that can activate dioxygen, were investigated. Phenolic substrates that were expected to undergo aromatic hydroxylation, showed oxidative polymerization without insertion of oxygen. The mechanism of this polymerization turns out to be a radical coupling reaction as was established by experiments with the model substrate 2,4-di-tert-butylphenol. In addition to Cu(II), the Mn(III) complex of and the Fe(II) complex of were tested as oxidation catalysts. Oxidation of catechol was observed for the Cu(II) complex of receptor but the other metal complexes did not lead to oxidation.  相似文献   

9.
Potentially tetradentate ligands N,N"-di(2-hydroxybenzyl)ethylenediamine (L1) and N,N"-di(2-hydroxybenzyl)o-phenylenediamine (L2) and complexes of Cu(II), Co(II), and Ni(II) with L1and L2were synthesized. The EPR and electronic spectroscopy methods were used to reveal the octahedral structure of the Cu(II) complex with L1in the solid state. In water–alcohol solutions, the Cu(II) and Ni(II) complexes with both ligands have distorted octahedral structures. The Co(II) complexes form dioxygen adduct with L1. In the presence of oxygen, the ligands in the obtained complex compounds can undergo oxidative dehydrogenation with selective formation of the respective disalicylaldimines. In the case of L2, the oxidative dehydrogenation is observed for the complexes of all studied metals in comparatively mild conditions (T= 30°C, methanol and other solvents), while in the case of L1, it occurs only with the Co(II) complexes in the presence of pyridine.  相似文献   

10.
Using Schiff's base ligand, several Cu(II) based bimetallic complexes such as Cu-Cu, Cu-Co, Cu-Ni, Cu-Zn, Cu-Mn have been prepared in a stepwise procedure. The structures of these complexes and the ligand have been proposed on the basis of FAB mass, elemental analysis, UV-vis, IR, electron paramagnetic resonance (EPR) and CV studies. EPR parameters, obtained through complete simulation, suggest that the formation of bimetallic complexes forces the Cu(II) centre to increase the flexibility in comparison with the monometallic Cu(II) complex. However, the nature of the second metal ion in the bimetallic complex effects the distortion around the first metal ion. The reduction of the complexes from Cu(II) to Cu(I) involves a large geometrical change and is found to be irreversible. A large positive shift is seen in the cathodic process, which can be ascribed to increased distortion due to bimetallic coordination. These complexes have potential usage in DNA studies.  相似文献   

11.
Copper transfer to cuproproteins located in vesicular compartments of the secretory pathway depends on activity of the copper-translocating ATPase (ATP7A), but the mechanism of transfer is largely unexplored. Copper-ATPase ATP7A is unique in having a sequence rich in histidine and methionine residues located on the lumenal side of the membrane. The corresponding fragment binds Cu(I) when expressed as a chimera with a scaffold protein, and mutations or deletions of His and/or Met residues in its sequence inhibit dephosphorylation of the ATPase, a catalytic step associated with copper release. Here we present evidence for a potential role of this lumenal region of ATP7A in copper transfer to cuproenzymes. Both Cu(II) and Cu(I) forms were investigated since the form in which copper is transferred to acceptor proteins is currently unknown. Analysis of Cu(II) using EPR demonstrated that at Cu:P ratios below 1:1 (15)N-substituted protein had Cu(II) bound by 4 His residues, but this coordination changed as the Cu(II) to protein ratio increased toward 2:1. XAS confirmed this coordination via analysis of the intensity of outer-shell scattering from imidazole residues. The Cu(II) complexes could be reduced to their Cu(I) counterparts by ascorbate, but here again, as shown by EXAFS and XANES spectroscopy, the coordination was dependent on copper loading. At low copper Cu(I) was bound by a mixed ligand set of His + Met, whereas at higher ratios His coordination predominated. The copper-loaded loop was able to transfer either Cu(II) or Cu(I) to peptidylglycine monooxygenase in the presence of chelating resin, generating catalytically active enzyme in a process that appeared to involve direct interaction between the two partners. The variation of coordination with copper loading suggests copper-dependent conformational change which in turn could act as a signal for regulating copper release by the ATPase pump.  相似文献   

12.
Eight mixed copper(II) complexes of the type [Cu(II)(D)(HL)], where D = anion of glycylglycine, glycyl-L-tyrosine or glycyl-L-phenylalanine, and HL = imidazole, 1-methylimidazole, 2-methylimidazole or benzimidazole have been prepared and characterised. The visible and EPR spectral studies of these complexes indicate that they are monomeric having five coordinate square pyramidal geometry (possibly distorted) about Cu(II). The dipeptide behaves as terdentate ligand in these complexes with amino, ionised amide nitrogen and carboxylate oxygen donor atoms approximately tetragonally disposed about Cu(II). The magnetic and bonding parameters obtained by detailed EPR spectral analysis coupled with electronic absorption spectral data suggest that imidazole, 1-methylimidazole, 2-methylimidazole or benzimidazole occupies the fourth position in the tetragonal plane and water molecule occupies an axial position about Cu(II) in solid state and in solution.  相似文献   

13.
The reactivity of copper complexes of three different second-generation bispidine-based ligands (bispidine = 3,7-diazabicyclo[3.3.1]nonane; mono- and bis-tetradentate; exclusively tertiary amine donors) with dioxygen [(reversible) binding of dioxygen by copper(I)] is reported. The UV-vis, electrospray ionization mass spectrometry, electron paramagnetic resonance, and vibrational spectra (resonance Raman) of the dioxygen adducts indicate that, depending on the ligand and reaction conditions, several different species (mono- and dinuclear, superoxo, peroxo, and hydroperoxo), partially in equilibrium with each other, are formed. Minor changes in the ligand structure and/or experimental conditions (solvent, temperature, relative concentrations) allow switching between the different forms. With one of the ligands, an end-on peroxodicopper(II) complex and a mononuclear hydroperoxocopper(II) complex could be characterized. With another ligand, reversible dioxygen binding was observed, leading to a metastable superoxocopper(II) complex. The amount of dioxygen involved in the reversible binding to Cu(I) was determined quantitatively. The mechanism of dioxygen binding as well as the preference of each of the three ligands for a particular dioxygen adduct is discussed on the basis of a computational (density functional theory) analysis.  相似文献   

14.
The dioxygen activation of a series of Cu(I)Cu(I)Cu(I) complexes based on the ligands (L) 3,3'-(1,4-diazepane- 1,4-diyl)bis(1-{[2-(dimethylamino)ethyl](methyl)amino}propan-2-ol)(7-Me) or 3,3'-(1,4-diazepane-1,4-diyl)bis(1-{[2-(diethylamino)ethyl](ethyl)amino}propan-2-ol)(7-Et) forms an intermediate capable of mediating facile O-atom transfer to simple organic substrates at room temperature. To elucidate the dioxygen chemistry, we have examined the reactions of 7-Me, 7-Et, and 3,3'-(1,4-diazepane-1,4-diyl)bis[1-(4-methylpiperazin-1-yl)propan-2-ol] (7-N-Meppz) with dioxygen at -80, -55, and -35?°C in propionitrile (EtCN) by UV-visible, 77?K EPR, and X-ray absorption spectroscopy, and 7-N-Meppz and 7-Me with dioxygen at room temperature in acetonitrile (MeCN) by diode array spectrophotometry. At both -80 and -55?°C, the mixing of the starting [Cu(I)Cu(I)Cu(I)(L)](1+) complex (1) with O(2)-saturated propionitrile (EtCN) led to a bright green solution consisting of two paramagnetic species: the green dioxygen adduct [Cu(II)Cu(II)(μ-η(2):η(2)-peroxo)Cu(II)(L)](2+) (2) and the blue [Cu(II)Cu(II)(μ-O)Cu(II)(L)](2+) species (3). These observations are consistent with the initial formation of [Cu(II)Cu(II)(μ-O)(2)Cu(III)(L)](1+)(4), followed by rapid abortion of this highly reactive species by intercluster electron transfer from a second molecule of complex 1 to give the blue species 3 and subsequent oxygenation of the partially oxidized [Cu(II)Cu(I)Cu(I)(L)](2+)(5) to form the green dioxygen adduct 2. Assignment of 2 to [Cu(II)Cu(II)(μ-η(2):η(2)-peroxo)Cu(II)(L)](2+) is consistent with its reactivity with water to give H(2)O(2) and the blue species 3, as well as its propensity to be photoreduced in the X-ray beam during X-ray absorption experiments at room temperature. In light of these observations, the development of an oxidation catalyst based on the tricopper system requires consideration of the following design criteria: 1)?rapid dioxygen chemistry; 2)?facile O-atom transfer from the activated cluster to substrate; and 3)?a suitable reductant to rapidly regenerate complex 1 to accomplish efficient catalytic turnover.  相似文献   

15.
Galactose oxidase (GO) is an enzyme that catalyzes two-electron oxidations. Its active site contains a copper atom coordinated to a tyrosyl radical, the biogenesis of which requires copper and dioxygen. We have recently studied the properties of electrochemically generated mononuclear Cu(II)-phenoxyl radical systems as model compounds of GO. We present here the solution chemistry of these ligands under various copper and dioxygen statuses: N(3)O ligands first chelate Cu(II), leading, in the presence of base, to [Cu(II)(ligand)(CH(3)CN)](+) complexes (ortho-tert-butylated ligands) or [(Cu(II))(2)(ligand)(2)](2+) complexes (ortho-methoxylated ligands). Excess copper(II) then oxidizes the complex to the corresponding mononuclear Cu(II)-phenoxyl radical species. N(2)O(2) tripodal ligands, in the presence of copper(II), afford directly a copper(II)-phenoxyl radical species. Addition of more than two molar equivalents of copper(II) affords a Cu(II)-bis(phenoxyl) diradical species. The donor set of the ligand directs the reaction towards comproportionation for ligands possessing an N(3)O donor set, while disproportionation is observed for ligands possessing an N(2)O(2) donor set. These results are discussed in the light of recent results concerning the self-processing of GO. A path involving copper(II) disproportionation is proposed for oxidation of the cross-linked tyrosinate of GO, supporting the fact that both copper(I) and copper(II) activate the enzyme.  相似文献   

16.
Due in large part to the lack of crystal structures of the amyloid-beta (Abeta) peptide and its complexes with Cu(II), Fe(II), and Zn(II), characterization of the metal-Abeta complex has been difficult. In this work, we investigated the complexation of Cu(II) by Abeta through tandem use of fluorescence and electron paramagnetic resonance (EPR) spectroscopies. EPR experiments indicate that Cu(II) bound to Abeta can be reduced to Cu(I) using sodium borohydride and that both Abeta-Cu(II) and Abeta-Cu(I) are chemically stable. Upon reduction of Cu(II) to Cu(I), the Abeta fluorescence, commonly reported to be quenched upon Abeta-Cu(II) complex formation, can be regenerated. The absence of the characteristic tyrosinate peak in the absorption spectra of Abeta-Cu(II) complexes provides evidence that the sole tyrosine residue in Abeta is not one of the four equatorial ligands bound to Cu(II), but remains close to the metal center, and its fluorescence is sensitive to the copper oxidation state and perturbations in the coordination sphere. Further analysis of the quenching and Cu(II) binding behaviors at different Cu(II) concentrations and in the presence of the competing ligand glycine offers evidence supporting the operation of two binding regimes which demonstrate different levels of fluorescence recovery upon addition of the reducing agent. We provide results that suggest the fluorescence quenching is likely caused by charge transfer processes. Thus, by using tyrosine to probe the coordination site, fluorescence spectroscopy provides valuable mechanistic insights into the oxidation state of copper ions bound to Abeta, the binding heterogeneity, and the influence of solution conditions on complex formation.  相似文献   

17.
Tridentate chelate complexes M[LX?·?2H2O], where M?=?Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have been synthesized from the Schiff base L?=?N-[1-(3-aminopropyl)imidazole]salicylaldimine and X?=?Cl. Microanalytical data, UV-Vis, magnetic susceptibility, IR, 1H-NMR, mass, and EPR techniques were used to confirm the structures. Electronic absorption spectra and magnetic susceptibility measurements suggest square-planar geometry for copper complex and octahedral for other metal complexes. EPR spectra of copper(II) complex recorded at 300?K confirm the distorted square-planar geometry of the copper(II) complex. Biological activities of the ligand and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans by the well diffusion method. The activity data show the metal complexes to be more potent than the parent ligand against two bacterial species and one fungus. The electrochemical behavior of the copper complex was studied by cyclic voltammetry.  相似文献   

18.
At low temperatures, the mononuclear copper(I) complex of the tetradentate tripodal aliphatic amine Me(6)tren (Me(6)tren = tris(2-dimethylaminoethyl)amine) [Cu(I)(Me(6)tren)(RCN)](+) first reversibly binds dioxygen to form a 1:1 Cu-O(2) species which further reacts reversibly with a second [Cu(I)(Me(6)tren)(RCN)](+) ion to form the dinuclear 2:1 Cu(2)O(2) adduct. The reaction can be observed using low temperature stopped-flow techniques. The copper superoxo complex as well as the peroxo complex were characterized by resonance Raman spectroscopy. The spectral characteristics and full kinetic and thermodynamic results for the reaction of [Cu(I)(Me(6)tren)(RCN)](+) with dioxygen are reported.  相似文献   

19.
A series of new coordination complexes of cobalt(II), nickel(II) and copper(II) with two new aroylhydrazones, 2-hydroxy-1-naphthaldehyde isonicotinoylhydrazone (H(2)L(1)) and 2-hydroxy-1-naphthaldehyde-2-thenoyl-hydrazone (H(2)L(2)) have been synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibility measurements, (1)H NMR spectroscopy, IR spectroscopy, electronic spectroscopy, EPR spectroscopy and thermal analysis. IR spectra suggests ligands acts as a tridentate dibasic donor coordinating through the deprotonated naphtholic oxygen atom, azomethine nitrogen atom and enolic oxygen atom. EPR and ligand field spectra suggests octahedral geometry for Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complexes.  相似文献   

20.
A functional analog of the active site in the respiratory enzyme, cytochrome c oxidase (CcO) reproduces every feature in CcO's active site: a myoglobin-like heme (heme a3), a distal tridentate imidazole copper complex (Cu(B)), a phenol (Tyr244), and a proximal imidazole. When covalently attached to a liquid-crystalline SAM film on an Au electrode, this functional model continuously catalyzes the selective four-electron reduction of dioxygen at physiological potential and pH, under rate-limiting electron flux (as occurs in CcO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号