首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.  相似文献   

2.
A new Schiff base ligand was prepared by condensation of 2-hydroxy-4-methoxybenzaldehyde with 1,2-propanediamine. The ligand and its metal complexes were characterized by elemental analysis, FT-IR, 1H and 13C NMR, magnetic moment, molar conductance, UV-Vis, SEM and thermal analysis (TGA). The molar conductance measurements indicated that all the metal complexes were non-electrolytes. IR spectra showed that ligand (L) behaves as a neutral tetradentate ligand and binds to the metal ions by the two azomethine nitrogen atoms and two phenolic oxygen atoms. The electronic absorption spectra and magnetic susceptibility measurements indicated square planar geometry for the Ni(II) and Cu(II) complexes while other metal complexes showed tetrahedral geometry. Also the surface morphology of the complexes was studied by SEM.  相似文献   

3.
Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L(1)) and semicarbazone (L(2)) derived from pyrole-2-carboxyaldehyde. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies .The molar conductance measurements of the complexes in DMSO correspond to non-electrolytic nature except Co(L1)2(NO3)2 and Ni(L1)2(NO3)2 complexes which are 1:2 electrolytes. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Co(II) and Ni(II) complexes except Co(L1)2(NO3)2 and Ni(L1)2(NO3)2 which are of tetrahedral geometry. A tetragonal geometry may be suggested for Cu(II) complexes.  相似文献   

4.
Copper(II) complexes of reduced glutathione (GSH) of general composition Na[Cu(L)(X)]*nH2O (where LH2=GSH; X=Cl-, NO3-, NCS-, CH3CO2-, HCO2-, ClO4- and n=0-4) have been prepared and characterized by elemental analysis, magnetic susceptibility measurements, IR spectroscopy, EPR spectroscopy and ligand-field spectroscopy. The EPR and ligand field spectra in the solid state suggest planar geometry for all the complexes.  相似文献   

5.
Mn(II), Co(II) and Ni(II) complexes of 2-methylcyclohexanone thiosemicarbazone(MCHTSC L(1)) and 2-methylcyclohexanone-(4)N-methyl-3-thiosemicarbazone (MCHMTSC L(2)), general composition [M(L)(2)X(2)] (where M = Mn(II), Co(II), Ni(II), L = L(1) or L(2) and X = Cl(-), NO(3)(-), and [(1/2)SO(4)(2-)) have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, UV-vis, IR, EPR, and mass spectral studies. Various physico-chemical techniques suggest an octahedral geometry for all the complexes.  相似文献   

6.
Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L(1)) and semicarbazone (L(2)) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L)(2)(SO(4)) and Cu(L)(2)(SO(4)) [where L=L(1) and L(2)] which are of five coordinated square pyramidal geometry.  相似文献   

7.
Manganese(II), cobalt(II), nickel(II), and copper(II) complexes are synthesized with a novel tetradentate ligand, viz. 1,5,9,13-tetraaza-6,14-dioxo-8,16-diphenylcyclohexadecane (L) and characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic, and EPR spectral studies. The molar conductance measurements of the complexes in DMSO correspond to be nonelectrolyte nature for Mn(II), Co(II), and Cu(II) whereas 1:2 electrolytes for Ni(II) complexes. Thus, these complexes may be formulated as [M(L)X(2)] and [Ni(L)]X(2), respectively (where M = Mn(II), Co(II), and Cu(II) and X = Cl- and NO(3-)). On the basis of IR, electronic, and EPR spectral studies an octahedral geometry has been assigned for Mn(II) and Co(II) complexes, square-planar for Ni(II) whereas tetragonal for Cu(II) complexes. The ligand and its complexes were also evaluated against the growth of bacteria and pathogenic fungi in vitro.  相似文献   

8.
Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L1) and semicarbazone (L2) derived from 2-acetyl furan. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMSO correspond to non-electrolytic nature except Ni(L)2(NO3)2, which is 1:2 electrolyte. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Co(II) and Ni(II) complexes except nitrato complexes of Ni(II) which is of tetrahedral geometry, whereas tetragonal geometry for Cu(II) complexes.  相似文献   

9.
Nickel(II) and copper(II) complexes are synthesized with a novel tetradentate macrocyclic ligand, i.e. 2,6,12,16,21,22-hexaaza;3,5,13,15-tetraphenyltricyclo[15,3,1,1(7-11)] docosa;1(21),2,5,7,9,11(22),12,15,17,19-decaene (L) and characterized by the elemental analysis, magnetic susceptibility measurements, mass, (1)H NMR, IR, electronic and EPR spectral studies. All the complexes are non-electrolytic in nature. Thus, these may be formulated as [M(L)X(2)] [M=Ni(II), Cu(II) and X=Cl(-), NO(3)(-) and (1/2)SO(4)(2-)]. Ni(II) and Cu(II) complexes show magnetic moments corresponding to two and one unpaired electron, respectively. On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Ni(II) and tetragonal geometry for Cu(II) complexes.  相似文献   

10.
New syntheses are reported of 5-tert-butyl-2-hydroxy-3-methylsulfanylbenzaldehyde, 5-tert-butyl-2-hydroxy-3-phenylsulfanyl-benzaldehyde, and salcyen (H(2)L(1)-H(2)L(3)) and salcyan (H(2)L(4)-H(2)L(6))-type ligands derived from these aldehydes and from 5-tert-butyl-2-hydroxybenzaldehyde. The complexes [CuL](L(2-)=[L(1)](2-)-[L(6)](2-)) bearing sulfanyl substituents each show two distinct voltammetric ligand-based oxidations under the same conditions, the first of which is chemically reversible. The first oxidation product is much longer lived by coulometry for the salcyen than for the salcyan ligand complexes, despite the latter having a substantially lower oxidation potential. The lifetimes of all the ligand oxidation products in this system are substantially smaller than for similar compounds derived from 3,5-di(tert-butyl)-2-hydroxybenzaldehyde (Dalton Trans., 2004, 2662). Attempted chemical oxidation of the Schiff base compounds using AgBF(4) yielded instead stable silver(i) adducts. A crystal structure of one such compound showed that the Ag atom was coordinated in a slightly bent geometry by the two ligand sulfanyl groups, with two additional long-range Ag...O interactions to the phenoxide donors. EPR spectra showed that some of these silver adducts dimerise in CH(2)Cl(2), probably through basal, apical intermolecular Cu-O...Cu bridging. In contrast the parent copper(ii) complexes are all monomeric in this solvent by EPR.  相似文献   

11.
Cobalt(II), nickel(II), and copper(II) (1, 2, and 3) complexes of the dianionic form of the bis(phenolate) ligand N,N-bis(3,4-dimethyl-2-hydroxybenzyl)-N',N'-dimethylethylenediamine (H2L) have been synthesized by electrochemical oxidation of the appropriate metal in an acetonitrile solution of the ligand. When copper is used as the anode, the addition of 1,10-phenanthroline to the electrolytic phase gave rise to a different compound [CuL]2.2CH3CN (4). The compounds [CoL]2.2CH3CN (1), [Ni2L2(H2O)].H2O (2), [CuL]2.3H2O (3), and [CuL]2.2CH3CN (4) were characterized by microanalysis, IR, electronic spectroscopy, FAB mass spectrometry, magnetic measurements and by single-crystal X-ray diffraction. The crystal structures show that the complexes have a dinuclear structure. In compounds 1, 3, and 4, two metal ions are coordinated by the two amine nitrogens and the two phenol oxygen atoms of a deprotonated pendant phenol ligand, with one phenolic oxygen atom from ligand acting as a bridge. In compounds 1 and 3, each metal center has a geometry that is closest to trigonal bipyramidal. Magnetic susceptibility data for both compounds show an antiferromagnetic coupling with 2J = -15 cm(-1) for the cobalt(II) complex and a strong antiferromagnetic coupling with 2J = -654 cm(-1) for the copper(II) complex. However, in 4 the geometry around the metal is closer to square pyramidal and the compound shows a lower antiferromagnetic coupling (2J = -90 cm(-1)) than in 3. The nickel atoms in the dimeric compound 2 are hexacoordinate. The NiN2O4 chromophore has a highly distorted octahedral geometry. In this structure, a dianionic ligand binds to one nickel through the two amine nitrogen atoms and the two oxygen atoms and to an adjacent nickel via one of these oxygen atoms. The nickel atoms are linked through a triple oxygen bridge involving two phenolic oxygens, each from a different ligand, and an oxygen atom from a water molecule. The two nickel ions in 2 are ferromagnetically coupled with 2J = 19.8 cm(-1).  相似文献   

12.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from vanillin and dl-alpha-aminobutyric acid were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements, powder XRD and biological activity. The analytical data show the composition of the metal complex to be [ML(H(2)O)], where L is the Schiff base ligand. The conductance data indicate that all the complexes are non-electrolytes. IR results demonstrate the tridentate binding of the Schiff base ligand involving azomethine nitrogen, phenolic oxygen and carboxylato oxygen atoms. The IR data also indicate the coordination of a water molecule with the metal ion in the complex. The electronic spectral measurements show that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex has square planar geometry. The powder XRD studies indicate that Co(II) and Cu(II) complexes are amorphous, whereas Ni(II) and Zn(II) complexes are crystalline in nature. Magnetic measurements show that Co(II), Ni(II) and Cu(II) complexes have paramagnetic behaviour. Antibacterial results indicated that the metal complexes are more active than the ligand.  相似文献   

13.
The Schiff base ligand, N,N'-bis-(2-thiophenecarboxaldimine)-3,3'-diaminobenzidine (L) obtained from condensation of 2-thiophenecarboxaldehyde and 3,3'-diaminobenzidine, was used to synthesize the complexes of type, [M2L2]Cl4 [M=Co(II), Ni(II), Cu(II), Cd(II) and Hg(II)]. The newly synthesized ligand (L) was characterized on the basis of the results of elemental analysis, FT-IR, 1H NMR, 13C NMR, mass spectroscopic studies and single crystal X-ray crystallography. The characteristic resonance signals in 1H NMR and 13C NMR spectra indicated the presence of azomethine group as a result of condensation reaction. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility measurements, molar conductance and spectroscopic studies viz., FT-IR, 1H and 13C NMR, UV-vis and EPR. EPR, UV-vis and magnetic moment data revealed an octahedral geometry for complexes with distortion in Cu(II) complex and conductivity data show 1:2 electrolytic nature of complexes. Absoption and fluorescence spectroscopic studies supported that Schiff base ligand L and its Co(II), Ni(II) and Cu(II) complexes exhibited significant binding to calf thymus DNA. The complexes exhibited higher affinity to calf thymus DNA than the free Schiff base ligand L.  相似文献   

14.
Manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and chromium(III) complexes of (E)-2-(2-(2-hydroxybenzylidene)hydrazinyl)-2-oxo-N-phenylacetamide were synthesized and characterized by elemental and thermal (TG and DTA) analyses, IR, UV-vis and (1)H NMR spectra as well as magnetic moment. Mononuclear complexes are obtained with 1:1 molar ratio except [Mn(HOS)(2)(H(2)O)(2)] and [Co(OS)(2)](H(2)O)(2) complexes which are obtained with 1:2 molar ratios. The IR spectra of ligand and metal complexes reveal various modes of chelation. The ligand behaves as a monobasic bidentate one and coordination occurs via the enolic oxygen atom and azomethine nitrogen atom. The ligand behaves also as a monobasic tridentate one and coordination occurs through the carbonyl oxygen atom, azomethine nitrogen atom and the hydroxyl oxygen. Moreover, the ligand behaves as a dibasic tridentate and coordination occurs via the enolic oxygen, azomethine nitrogen and the hydroxyl oxygen atoms. The electronic spectra and magnetic moment measurements reveal that all complexes possess octahedral geometry except the copper complexes possesses a square planar geometry. From the modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligands and their investigated complexes. The thermal studies showed the type of water molecules involved in metal complexes as well as the thermal decomposition of some metal complexes. The protonation constant of the ligand and the stability constant of metal complexes were determined pH-metrically in 50% (v/v) dioxane-water mixture at 298 K and found to be consistent with Irving-Williams order. Moreover, the minimal inhibitory concentration (MIC) of these compounds against Staphylococcus aureus, Escherechia coli and Candida albicans were determined.  相似文献   

15.
Cobalt(II), nickel(II) and copper(II) complexes having the general composition M(L)X2 (where M = CO(II), Ni(II) and Cu(II), L = ligand, i.e. 3,4,12,13-tetraketo-2,5,11,14,19,20-hexaazatricyclo[13.3.1.1(6-10)]cosane; 1(19),6,8,10(20),15,17-hexaene and X stands for Cl-; NO3- and SO42-), have been prepared. The structure of the complexes has been elucidated by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The magnetic moment measurements of the complexes indicate that the metal ion is in high-spin state. On the basis of IR, electronic and EPR spectral studies an octahedral geometry was assigned for Co(II) and Ni(II) complexes whereas tetragonal geometry for Cu(II) complexes. This ligand and its complexes were also screened against bacteria and pathogenic fungi in vitro.  相似文献   

16.
The copper(II) coordination chemistry of westiellamide (H(3)L(wa)), as well as of three synthetic analogues with an [18]azacrown-6 macrocyclic structure but with three imidazole (H(3)L(1)), oxazole (H(3)L(2)), and thiazole (H(3)L(3)) rings instead of oxazoline, is reported. As in the larger patellamide rings, the N(heterocycle)-N(peptide)-N(heterocycle) binding site is highly preorganized for copper(II) coordination. In contrast to earlier reports, the macrocyclic peptides have been found to form stable mono- and dinuclear copper(II) complexes. The coordination of copper(II) has been monitored by high-resolution electrospray mass spectrometry (ESI-MS), spectrophotometric and polarimetric titrations, and EPR and IR spectroscopies, and the structural assignments have been supported by time-dependent studies (UV/Vis/NIR, ESI-MS, and EPR) of the complexation reaction of copper(II) with H(3)L(1). Density functional theory (DFT) calculations have been used to model the structures of the copper(II) complexes on the basis of their spectroscopic data. The copper(II) ion has a distorted square-pyramidal geometry with one or two coordinated solvent molecules (CH(3)OH) in the mononuclear copper(II) cyclic peptide complexes, but the coordination sphere in [Cu(H(2)L(wa))(OHCH(3))](+) differs from those in the synthetic analogues, [Cu(H(2)L)(OHCH(3))(2)](+) (L = L(1), L(2), L(3)). Dinuclear copper(II) complexes ([Cu(II) (2)(HL)(mu-X)](+); X = OCH(3), OH; L = L(1), L(2), L(3), L(wa)) are observed in the mass spectra. While a dipole-dipole coupled EPR spectrum is observed for the dinuclear copper(II) complex of H(3)L(3), the corresponding complexes with H(3)L (L = L(1), L(2), L(wa)) are EPR-silent. This may be explained in terms of strong antiferromagnetic coupling (H(3)L(1)) and/or a low concentration of the dicopper(II) complexes (H(3)L(wa), H(3)L(2)), in agreement with the mass spectrometric observations.  相似文献   

17.
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes with 1,5,11,15-tetraaza-21,22-dioxo-tricyclo [19,3,1,I6,10]-5,10,15-20-dicosatetraene (L), as a new macrocyclicligand, have been synthesized with and characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMF correspond to non-electrolytic nature of Mn(II), Co(II) and Cu(II) complexes, while showing a 1:2 electrolyte for thew Ni(II) complexe. Thus, these complexes may be formulated as [M(L)X2] and [Ni(L)]X2 (where M = Mn(II), Co(II) and Cu(II) and X = Cl- and NO3 -). On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for Mn(II) and Co(II), a square planar for Ni(II) and tetragonal for Cu(II) complexes. In vitro ligand and its metal complexes were also screened against the growth of some fungal and bacterial species in order to assess their antimicrobial properties.  相似文献   

18.
The complexes of transition metal ions with an azamacrocyclic tetradentate nitrogen donor [N4] ligand viz. 2,6,12,16,21,22-hexaaza;3,5,13,15-tetramethyltricyclo[15.3.1.1(7-11)] docosa;1(21),2,5,7,9,11(22),12,15,17,19-decaene (L) have been synthesized. All the complexes were found to have general composition M(L)X2 [where M = manganese(II), cobalt(II), nickel(II) and copper(II) and X = Cl- & NO3-]. All the complexes are characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic, EPR spectral and cyclic voltammetric studies. An octahedral geometry was assigned for Mn(II), Co(II) and Ni(II) complexes and tetragonal for Cu(II) complexes. The biological actions of the ligand and complexes have been screened in vitro against many bacteria and pathogenic fungi to study their comparative capacity to inhibit the growth.  相似文献   

19.
The synthesis, characterization and diuretic activity of four new biologically active complexes of Mg(II) and VO(II) with bidentate Schiff base ligand acetazolamide–salicylaldimine (L) obtained from the inserted condensation of 5-acetamido-1,3,4-thiadiazole-2-sulphonamide (acetazolamide) with salicylaldehyde in a 1:1 molar ratio have been reported. Using this bidentate ligand complexes of Mg(II), Mn(II), Fe(II) and VO(II) with general formula ML2 have been synthesized. The synthesized complexes were characterized by several techniques using elemental analysis, FT-IR, electronic spectra, TGA, mass, particle size analysis and molar conductance measurements. The elemental analysis data suggest the stoichiometry to be 1:2 [M:L]. The molar conductance measurements suggest non-electrolytic nature of the complexes. Infrared spectral data agreed with the coordination to the central metal ion through deprotonated phenolic oxygen and azomethine nitrogen atoms. On the basis of spectral studies, octahedral geometry is suggested for Mg(II), Mn(II), Fe(II) and square pyramidal geometry is suggested for VO(II) complexes. The pure drug, synthesized ligand and metal(II) complexes were screened for their antimicrobial activities against Eschericia coli, Bacillus subtilis, Aspergillus niger and Aspergillus flavous. The results show that the metal complexes were more active than the ligand and pure drug against these microbial species as expected. The ligand and its Mg(II) complexes was screened for their diuretic activity also.  相似文献   

20.
The electronic absorption spectra of 2-(2-hydroxynaphthylazo)-4-hydroxy-6-methyl-1,3-pyrimidine in pure organic solvents of different polarities and in buffer solutions of varying pH are studied. The important bands in the IR and the main signals in the (1)H NMR spectra are assigned. The observed UV-vis absorption bands are assigned to the corresponding electronic transitions. The molecular stoichiometry, stability constant, absorption maximum, molar absorptivity and Sandell's sensitivity of the complexes are calculated. Obeyence to Beer's law and Ringbom optimum concentration ranges are also determined. The ability of using the titled azodye as metalochromic indicator in complexometric titrations was also studied. The effect of Co(II), Ni(II) and Cu(II) ions on the fluorescence of the azodye is also considered. The solid Cu(II) complexes of the titled azodye have been prepared and characterized by elemental, IR, UV-vis spectra as well as by conductometric and magnetic measurements. The data suggest square planar geometry for 1:1 and 1:2 (M:L) complexes. The thermal behaviour of the complexes has been studied. The kinetic parameters (n, E, A, deltaH, DeltaS and deltaG) of the thermal decomposition steps are computed using Coats-Redfern equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号