首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotational spectrum of chlorofluoroiodomethane (CHClFI) has been investigated. Because its rotational spectrum is extremely crowded, extensive ab initio calculations were first performed in order to predict the molecular parameters. The low J transitions were measured using a pulsed-molecular-beam Fourier transform spectrometer, and the millimeter-wave spectrum was measured to determine accurate centrifugal distortion constants. Because of the high resolution of the experimental techniques, the analysis yielded accurate rotational constants, centrifugal distortion corrections, and the complete quadrupole coupling tensors for the iodine and chlorine nuclei, as well as the contribution of iodine to the spin-rotation interaction. These molecular parameters were determined for the two isotopologs CH35ClFI and CH37ClFI. They reproduce the observed transitions within the experimental accuracy. Moreover, the ab initio calculations have provided a precise equilibrium molecular structure. Furthermore, the ab initio molecular parameters are found in good agreement with the corresponding experimental values.  相似文献   

2.
The nuclear quadrupole coupling constants and asymmetry parameters of 14N and 2H of pyrazole and imidazole have been computed from ab initio SCF wavefunctions of double-zeta quality. The results agree with the recent experimental values obtained from microwave studies and are much better than those of previous theoretical studies.  相似文献   

3.
alpha-Glycylglycine in its actual crystalline phase is studied by ab initio calculated nuclear quadrupole coupling constants. These physical quantities are computed for 2H and 14N in the hydrogen bonds. The type of hydrogen bond is the N-H...O type. The computations are performed with the RHF and B3LYP methods and 6-31++G** and 6-311++G** basis sets using the Gaussian 98 program. Values of the calculated nuclear quadrupole coupling constants are shown in Tables 1-3. The aim of this work is the study of 2H and 14N quadrupole coupling constants which contribute in the CON2H...O=CN2H type of hydrogen bond. The computed nuclear quadrupole coupling constants of 2H nuclei meet the related experimental values. In addition, the computed chi value of 14N belonging to the -CO-14NH- group agrees well with values obtained experimentally. However, there are some discrepancies between calculated 14N chi values of the N+H3 residue and experiments. Also, the values of these physical parameters are calculated for >C2H2 of alpha-glycylglycine in its crystalline phase. Calculations for these parameters are carried out in a single molecule using X-ray diffraction coordinates, too.  相似文献   

4.
为了研究自然杂化轨道计算结果与核自旋偶合常数的相关性,本文进行了从头算级别的自然杂化轨道计算。采用STO-3G基组,利用Lowdin正交化原子轨道基组下的密度矩阵,得到了分子中各原子的杂化轨道、净电荷与^13C-H、^13C-^13C键自旋偶合常数^1Jcn和^1Jcc之间关系式。利用这些式子计算得到的结果与实验数据非常一致。  相似文献   

5.
The nuclear quadrupole coupling constants of the 14N nuclei for hydrazine, the inner and outer conformers of methylhydrazine, and the inner-outer and the outer-outer conformers of 1,2-dimethylhydrazine are calculated by an ab initio SCF method, and also by a CI calculation for hydrazine. The results are compared with available experimental values. Characteristic dependence of the X tensors on the conformational structure is demonstrated. An application of theoretical hyperfine structures to a spectral analysis is discussed.  相似文献   

6.
7.
Large-amplitude molecular motions which occur during isomerization can cause significant changes in electronic structure. These variations in electronic properties can be used to identify vibrationally-excited eigenstates which are localized along the potential energy surface. This work demonstrates that nuclear quadrupole hyperfine interactions can be used as a diagnostic marker of progress along the isomerization path in both the HC14N/H14NC and DC15N/D15NC chemical systems. Ab initio calculations at the CCSD(T)/cc-pCVQZ level indicate that the hyperfine interaction is extremely sensitive to the chemical bonding of the quadrupolar 14N nucleus and can therefore be used to determine in which potential well the vibrational wavefunction is localized. A natural bonding orbital analysis along the isomerization path further demonstrates that hyperfine interactions arise from the asphericity of the electron density at the quadrupolar nucleus. Using the CCSD(T) potential surface, the quadrupole coupling constants of highly-excited vibrational states are computed from a one-dimensional internal coordinate path Hamiltonian. The excellent agreement between ab initio calculations and recent measurements demonstrates that nuclear quadrupole hyperfine structure can be used as a diagnostic tool for characterizing localized HCN and HNC vibrational states.  相似文献   

8.
Rotational spectra of KrCuF and KrCuCl have been measured in the frequency range 8-18 GHz, using a pulsed jet cavity Fourier transform microwave spectrometer. The molecules were prepared by ablating Cu metal with a pulsed Nd:YAG laser (1064 nm) and allowing the plasma to react with appropriate precursors (Kr plus SF(6) or Cl(2)) contained in the backing gas of the jet (Ar or Kr). Rotational constants, internuclear distances, vibration frequencies, and (83)Kr, Cu, and Cl nuclear quadrupole coupling constants have all been evaluated. The Kr-Cu bonds are short and the complexes are rigid. The (83)Kr coupling constant of KrCuF is large (128.8 MHz). The Cu nuclear quadrupole coupling constants differ radically from those of uncomplexed CuF and CuCl molecules. The results are supported by those of ab initio calculations, which have also yielded Mulliken populations, MOLDEN plots of valence molecular orbitals and Laplace concentrations, and electron localization functions. The results are consistent with those reported earlier for other noble gas-noble metal halide complexes. The results have been used to assess the nature of the bonding in the complexes and have produced good evidence for weak noble gas-noble metal chemical bonding.  相似文献   

9.
The energy levels of CH(3)Cl(+)X?(2)E showing strong spin-vibronic coupling effect (Jahn-Teller effect) have been measured up to 3500 cm(-1) above the ground vibrational state using one-photon zero-kinetic energy photoelectron and mass-analyzed threshold ionization spectroscopic method. Theoretical calculations have been also performed to calculate the spin-vibronic energy levels using a diabatic model and ab initio adiabatic potential energy surfaces (PESs). In the theoretical calculations the diabatic potential energy surfaces are expanded by the Taylor expansions up to the fourth-order including the multimode vibronic interactions. The calculated spin-orbit energy splitting (224.6 cm(-1)) for the ground vibrational state is in good agreement with the experimental data (219 ± 3 cm(-1)), which indicates that the Jahn-Teller and the spin-orbit coupling have been properly described in the theoretical model near the zero-point energy level. Based on the assignments predicted by the theoretical calculations, the experimentally measured energy levels were fitted to those from the diabatic model by optimizing the main spectroscopic parameters. The PESs from the ab initio calculations at the level of CASPT2/vq(t)z were thus compared with those calculated from the experimentally determined spectroscopic parameters. The theoretical diagonal elements in the diabatic potential matrix are in good agreement with those determined using the experimental data, however, the theoretical off-diagonal elements appreciably deviate from those determined using the experimental data for geometric points far away from the conical intersections. It is also concluded that the JT effect in CH(3)Cl(+) mainly arises from the linear coupling and the mode coupling between the CH(3) deform (υ(5)) and CH(3) rock (υ(6)) vibrations. The mode couplings between the symmetric C-Cl stretching vibration υ(3) with υ(5) and υ(6) are also important to understand the spin-vibronic structure of the molecule.  相似文献   

10.
Four conformers of the non-proteinogenic α-amino acid isovaline, vaporized by laser ablation, are characterized by Fourier-transform microwave techniques in a supersonic expansion. The comparison between the experimental rotational and 14N nuclear quadrupole coupling constants and the ab initio calculated ones provides conclusive evidence for the identification of the conformers. The most stable species is stabilized by an N−H⋅⋅⋅O =C intramolecular hydrogen bond and a cis-COOH interaction, whereas the higher-energy conformers exhibit an N⋅⋅⋅H−O intramolecular hydrogen bond and trans-COOH, as in other aliphatic amino acids. The spectroscopic data herein reported can be used for the astrophysical purpose in a possible detection of isovaline in space.  相似文献   

11.
The use of different models based on experimental information about the observed level splitings, rotational constants, and far-infrared transition frequencies leads to different predictions on the equilibrium geometry for tetrahydrofuran. High-level ab initio calculations [coupled cluster singles, doubles (triples)/complete basis set (second order Moller-Plesset triple, quadrupole, quintuple)+zero-point energy(anharmonic)] suggest that the equilibrium conformation of tetrahydrofuran is an envelope C(s) structure. The theoretical geometrical parameters might be helpful to plan further microwave spectroscopic studies in order to get a physical interpretation of the measurements.  相似文献   

12.
Correlation curves have been derived from previous ab initio MO-LCAO-SCF calculations made on water molecules in hydrates. The OH-stretching frequency shifts have been correlated with: (a) ratios of the intensity of v?vOH for bonded water to that for free water, (b) shifts in the OH-distances and (c) quadrupole coupling constants for deuterium in D2O. Shifts in quadrupole coupling constants are also correlated with shifts in OH-distances. Comparisons have been made with experimental data and the agreement is found to be satisfactory.  相似文献   

13.
The available experimental rotational constants of cis,trans-1,4-difluorobutadiene do not permit a determination of a complete structure. However, this problem, rather frequent in finding structures, may be solved by the mixed estimation method. The experimental ground state rotational constants are corrected for the rovibrational contribution calculated from an ab initio force field. These semiexperimental data are supplemented by structural parameters from ab initio calculations and a weighted least-squares fit allows us to obtain a reasonable structure. The accuracy of the fitted parameters is checked by optimizing a structure at the coupled cluster level. A good agreement is found between the two methods, validating our procedure.  相似文献   

14.
Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order M?ller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.  相似文献   

15.
This study presents the identification of a title compound, p-biphenyloxycarbonylphenyl acrylate by means of experimental and theoretical evidences. The spectroscopic properties of the compound were experimentally investigated by Fourier transformation-infrared spectra (in the region 400-4000 cm(-1)) and nuclear magnetic resonance (NMR) chemical shifts (with a frequency of 400 MHz). Moreover, the optimized molecular structures, vibrational frequencies including infrared intensities and Raman activities, corresponding vibrational spectra interpreted with the aid of normal coordinate analysis based on scaled density functional force field, thermodynamic properties, atomic charges and ultraviolet-visible (UV-vis) spectra were analyzed utilizing ab initio Hartree-Fock (HF) and Density Functional Theory (B3LYP) methods at 6-31G(d,p) calculation level. It was found that the vibrational frequencies and chemical shifts obtained were shown to have a good agreement with available experimental results. We not only simulated frontier molecular orbitals (FMO) and molecular electrostatic potential (MEP) but also evaluated the transition state and energy band gap clearly.  相似文献   

16.
在大气化学和燃烧历程的研究中,只含两个碳原子的碳氢化合物自由基的研究占有很重要的地位.乙炔与氟原子的反应是实验室制取HCZC·自由基的重要方法.因此乙炔与氟原子的反应在动力学研究中一直很受重视.乙炔与氟原子的反应存在有以下三种反应方式问:门抽取反应:F+C。H。  相似文献   

17.
We used a combination of theoretical and experimental methods to derive the spectroscopic properties of imidazolium-based ionic liquids. Vibrational frequencies, NMR chemical shifts, and quadrupole coupling constants react in comparable manner to changes in the chemical environment. This suggests that both the IR and the NMR spectroscopic properties reflect a similar type of electronic perturbation caused by hydrogen bonding. These relationships of the spectroscopic properties provide detailed information about structural complexes and may thus serve as good indicators of ion-pair formation. They also help to decide which spectroscopic tool is the most sensitive for investigating molecular interactions. The measurement of only one spectroscopic property allows the prediction of other properties that cannot be so easily measured. In some cases, this is the only way to obtain reliable coupling constants for deriving molecular correlation times from macroscopic NMR relaxation times, thus opening a new path for studying structure-dynamics relations in ionic liquids.  相似文献   

18.
Experimental NMR measurements of the deuterium and (17)O T(1) relaxation times in deuterium-enriched liquid water have been performed from 275 to 350 K. These relaxation times can yield rotational correlation times of appropriate molecule-fixed unit vectors if the quadrupole coupling constants and asymmetry parameters are known. We determine the latter from ab initio studies of water clusters and experimental chemical shift measurements. We find that the rotational correlation time for the OD bond vector in D(2)(16)O varies from 5.8 ps at 275 K to 0.86 ps at 350 K, and that the rotational correlation time for the out-of-plane vector of dilute D(2)(17)O in D(2)(16)O varies from 4.4 ps at 275 K to 0.64 ps at 350 K. These results indicate that the rotational motion of water is anisotropic. Molecular dynamics simulations of liquid water are in good agreement with these experiments at the higher temperatures, but the simulation results are considerably faster than experiment at the lower temperatures.  相似文献   

19.
The Fourier transform microwave spectra of the various isotopologs of the weakly bound complex of carbon dioxide with the most abundant molecule in the atmosphere, nitrogen, have been measured. The structure of the complex has been determined and evidence for the inversion of the N(2) is presented. The molecule is T-shaped, with the OCO forming the cross of the T, a structure consistent with that deduced from a previous rotationally resolved infrared experiment. A significant wide-amplitude bending motion of the N(2) is deduced from the values of the (nearly identical) nuclear quadrupole coupling constants of the nitrogen nuclei. The spectroscopic results are compared with high-quality ab initio calculations. We examine the consequences of the N(2) CO(2) complex formation in the atmosphere upon the greenhouse warming potential of carbon dioxide.  相似文献   

20.
Rotational spectra of three isotopomers of the Xe-(H2O)2 van der Waals trimer were recorded using a pulsed-nozzle, Fourier transform microwave spectrometer. Nine [nine, four] a-type and twelve [eleven, seven] b-type transitions were measured for the 132Xe-(H2O)2 [129Xe-(H2O)2, 131Xe-(H2O)2] isotopomer. The determined rotational and centrifugal distortion constants were used to extract information about the structure and vibrational motions of the complex. The nuclear quadrupole hyperfine structures due to the 131Xe (nuclear spin quantum number I=3/2) nucleus were also detected. The large value of the off-diagonal nuclear quadrupole coupling constant chiab in particular provides detailed insight into the electronic environment of the xenon atom and the orientations of the water molecules within the complex. An effective structure that best reproduces the experimental 131Xe nuclear quadrupole coupling constants is rationalized by ab initio calculations. An overall goal of this line of work is to determine how the successive solvation of a xenon atom with water molecules affects the xenon electron distribution and its intermolecular interactions. The results may provide molecular level interpretations of 129Xe NMR data from, for example, imaging experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号