首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum steganography that utilizes the quantum mechanical effect to achieve the purpose of information hiding is a popular topic of quantum information. Recently, E1 Allati et al. proposed a new quantum steganography using the GHZ4 state. Since all of the 8 groups of unitary transformations used in the secret message encoding rule change the GHZ4 state into 6 instead of 8 different quantum states when the global phase is not considered, we point out that a 2-bit instead of a 3-bit secret message can be encoded by one group of the given unitary transformations. To encode a 3-bit secret message by performing a group of unitary transformations on the GHZ4 state, we give another 8 groups of unitary transformations that can change the GHZ4 state into 8 different quantum states. Due to the symmetry of the GHZ4 state, all the possible 16 groups of unitary transformations change the GHZ4 state into 8 different quantum states, so the improved protocol achieves a high efficiency.  相似文献   

2.
In this paper, two new efficient multiparty quantum direct secret sharing schemes are proposed via a six-particle GHZ state and Bell measurements. In the first scheme, based on the theory of security cryptanalysis, the secret message of the sender is directly encoded into the transmitted particles, and all the agents can obtain their information by performing bell measurement on the received particles, and then cooperate to recover the information of the sender. In the second scheme, we define a new secret shared coding method by performing local unitary operations on the transmitted particles, then agents perform Bell measurements on their own particles respectively, and feedback the measurement to the dealer. If the agent's results are matched with the previous coding method, the protocol will work out.In addition, the proposed two schemes have the following common advantages: the sender can send all prepared particles to the receiver, and can send an arbitrary key to the receiver, rather than a random secret key; the proposed schemes do not need to insert any detection sets to detect eavesdropping and can resist both existing attacks and spoofing attacks by dishonest agents. The sender need not to retain any photons, so the sender's quantum memory could be omitted here.  相似文献   

3.

A new quantum bi-signature scheme based on GHZ states and W states is proposed. In the proposed scheme, Alice and Bob sign one same message and send their signatures to Charlie. Different from some typical quantum signature schemes, the new quantum bi-signature scheme firstly sets up a secure channel and the three parties verify each other with the correlation of GHZ states. Then Alice, Bob and Charlie utilize the measurement outcomes of W states to implement signature and verification. The proposed scheme without any key converts the message with quantum one-way function to improve the security. The new quantum bi-signature scheme can solve the most issues of two-way choice in real life, and analysis results show that the proposed scheme is secure and efficient. Furthermore, the proposed scheme can be implemented with the existing physical technologies.

  相似文献   

4.
Controlled Secure Quantum Dialogue Using a Pure Entangled GHZ States   总被引:1,自引:0,他引:1  
We present a controlled secure quantum dialogue protocol using a non-maximally (pure) entangled Greenberger-Horne-Zeibinger (GHZ) states at first, and then discuss the requirements for a real quantum dialogue. We show that the authorized two users can exchange their secret messages after purifying the non-maximally entangled GHZ states quantum channel unconditionally securely and simultaneously under the control of a third party.  相似文献   

5.
Two protocols of quantum direct communication with authentication [Phys. Rev. A 73:042305, 2006] were recently proposed by Lee, Lim and Yang, based on the correlation of Greenberger-Horne-Zeilinger (GHZ) states. However, Zhang et al. showed that in the two protocols the authenticator Trent can eavesdrop the secret message by subtle strategies [Phys. Rev. A 75:026301, 2007]. In this paper, we propose two authenticated quantum direct communication (AQDC) protocols using Bell states. Users can identify each other by checking the correlation of Bell states. Alice can directly send a secret message to Bob without any previously shared secret using the remaining Bell states after authentication. The two proposed AQDC protocols are implemented under the condition that there is a quantum link between Alice and Bob and that there is no quantum link between Alice and Bob respectively, similar to the ones proposed by Lee, Lim and Yang [Phys. Rev. A 73:042305, 2006]. The proposed AQDC protocols not only fix the leaks in the AQDC protocols proposed by Lee, Lim and Yang, but also economize the quantum resource.  相似文献   

6.
量子直接通信   总被引:1,自引:0,他引:1       下载免费PDF全文
李熙涵 《物理学报》2015,64(16):160307-160307
量子直接通信是量子通信中的一个重要分支, 它是一种不需要事先建立密钥而直接传输机密信息的新型通信模式. 本综述将介绍量子直接通信的基本原理, 回顾量子直接通信的发展历程, 从最早的高效量子直接通信协议、两步量子直接通信模型、量子一次一密直接通信模型等, 到抗噪声的量子直接通信模型以及基于单光子多自由度量子态及超纠缠态的量子直接通信模型, 最后介绍量子直接通信的研究现状并展望其发展未来.  相似文献   

7.
黄伟  温巧燕  贾恒越  秦素娟  高飞 《中国物理 B》2012,21(10):100308-100308
We present two novel quantum secure direct communication(QSDC) protocols over different collective-noise channels.Different from the previous QSDC schemes over collective-noise channels,which are all source-encrypting protocols,our two protocols are based on channel-encryption.In both schemes,two authorized users first share a sequence of EPR pairs as their reusable quantum key.Then they use their quantum key to encrypt and decrypt the secret message carried by the decoherence-free states over the collective-noise channel.In theory,the intrinsic efficiencies of both protocols are high since there is no need to consume any entangled states including both the quantum key and the information carriers except the ones used for eavesdropping checks.For checking eavesdropping,the two parties only need to perform two-particle measurements on the decoy states during each round.Finally,we make a security analysis of our two protocols and demonstrate that they are secure.  相似文献   

8.
李渊  曾贵华 《中国物理》2007,16(10):2875-2879
In this paper, by using properties of quantum controlled-not manipulation and entanglement states, we have designed a novel (2, 3) quantum threshold scheme based on the Greenberger- Horne -Zeilinger (GHZ) state. The proposed scheme involves two phases, i.e. a secret sharing phase and a secret phase. Detailed proofs show that the proposed scheme is of unconditional security. Since the secret is shared among three participants, the proposed scheme may be applied to quantum key distribution and secret sharing.  相似文献   

9.

The main defects of the existing quantum secret sharing schemes are as follows: (1) The identity of the secret sender cannot be confirmed. Receivers of shared secret information may be vulnerable to Trojan attacks; (2) If a malicious attacker Eve impersonates the identity of the receiver, she can finally obtain all the information of the secret that Alice shared; (3) In the process of secret recovery, it is necessary to transmit qubits among all participants involved in secret recovery. Sometimes, the same particle needs to be operated on by all participants to achieve secret sharing, which increases the possibility of eavesdropping and also increases the probability of errors. In this work, we proposed a quantum secret sharing scheme with authentication, the receiver performs corresponding operations on qubits of Greenberger-Horne-Zeilinger(GHZ) state based on the key string calculated by the shared identity number and random Error Correction Code(ECC), the secret sender can calculate the corresponding measurement basis(MB) through the information she has, and then inform the measurement party. This process realizes the mutual authentication between the sender and the receiver. It can protect against identity impersonation attacks, through the ECC verification, it also can resist intercept-resend attacks.

  相似文献   

10.
A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein-Podolsky-Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.  相似文献   

11.
A secure quantum key distribution protocol is proposed to distribute the three-dimensional secret message in a two-way quantum channel based on the entanglement of two-qutrit quantum system. The present protocol has an advantage over transmitting directly the secret message with large capacity since the distributed message has been imposed on nonorthogonal two-qutrit-entangled states by the sender using the superdense coding via local unitary operations. The security is ensured by the entanglement of the two-qutrit quantum system and the secure transmission of the traveling-particle sequence in the lossless and noiseless channel.  相似文献   

12.

A multiparty quantum key agreement protocol based on three-photon entangled states is proposed. In this scheme, the quantum channel between all parties is that of a closed loop, in which the qubit transmission is one-way. Each party can obtain the sum of the other parties’ secret key values through the coding rules instead of extracting their private keys. The shared secret key cannot be determined by any subset of all the participants except the universal set and each party makes an equal contribution to the final key. Moreover, the security analysis shows our protocol can resist both outside attacks and inside attacks.

  相似文献   

13.
A quantum secret sharing scheme is proposed by making use of quantum registers. In the proposed scheme, secret message state is encoded into multipartite entangled states. Several identical multi-particle entanglement states are generated and each particle of the entanglement state is filled in different quantum registers which act as shares of the secret message. Two modes, i.e. the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the secret message may be recovered. The security analysis shows that the proposed scheme is secure against eavesdropping of eavesdropper and cheating of participants.  相似文献   

14.
An efficient quantum secure direct communication protocol with one-sender versus N-receiver is proposed. The secret bits can be encoded in the N + 1-particle GHZ states and can be decoded by the N receivers with a classical information of the sender plus their own measurement outcomes. Any attacks can be detected by comparing measurement results on the detecting states.  相似文献   

15.
In this paper,two fault tolerant channel-encrypting quantum dialogue(QD)protocols against collective noise are presented.One is against collective-dephasing noise,while the other is against collective-rotation noise.The decoherent-free states,each of which is composed of two physical qubits,act as traveling states combating collective noise.Einstein-Podolsky-Rosen pairs,which play the role of private quantum key,are securely shared between two participants over a collective-noise channel in advance.Through encryption and decryption with private quantum key,the initial state of each traveling two-photon logical qubit is privately shared between two participants.Due to quantum encryption sharing of the initial state of each traveling logical qubit,the issue of information leakage is overcome.The private quantum key can be repeatedly used after rotation as long as the rotation angle is properly chosen,making quantum resource economized.As a result,their information-theoretical efficiency is nearly up to 66.7%.The proposed QD protocols only need single-photon measurements rather than two-photon joint measurements for quantum measurements.Security analysis shows that an eavesdropper cannot obtain anything useful about secret messages during the dialogue process without being discovered.Furthermore,the proposed QD protocols can be implemented with current techniques in experiment.  相似文献   

16.
王剑  张权  唐朝京 《中国物理》2007,16(7):1868-1877
Broadcast encryption allows the sender to securely distribute his/her secret to a dynamically changing group of users over a broadcast channel. In this paper, we just take account of a simple broadcast communication task in quantum scenario, in which the central party broadcasts his secret to multi-receiver via quantum channel. We present three quantum broadcast communication schemes. The first scheme utilizes entanglement swapping and Greenberger--Horne--Zeilinger state to fulfil a task that the central party broadcasts the secret to a group of receivers who share a group key with him. In the second scheme, based on dense coding, the central party broadcasts the secret to multi-receiver, each of which shares an authentication key with him. The third scheme is a quantum broadcast communication scheme with quantum encryption, in which the central party can broadcast the secret to any subset of the legal receivers.  相似文献   

17.
Quantum secure direct communication is the direct communication of secret messages without need for establishing a shared secret key first. In the existing schemes, quantum secure direct communication is possible only when both parties are quantum. In this paper, we construct a three-step semiquantum secure direct communication (SQSDC) protocol based on single photon sources in which the sender Alice is classical. In a semiquantum protocol, a person is termed classical if he (she) can measure, prepare and send quantum states only with the fixed orthogonal quantum basis {|0〉, |1〉}. The security of the proposed SQSDC protocol is guaranteed by the complete robustness of semiquantum key distribution protocols and the unconditional security of classical one-time pad encryption. Therefore, the proposed SQSDC protocol is also completely robust. Complete robustness indicates that nonzero information acquired by an eavesdropper Eve on the secret message implies the nonzero probability that the legitimate participants can find errors on the bits tested by this protocol. In the proposed protocol, we suggest a method to check Eves disturbing in the doves returning phase such that Alice does not need to announce publicly any position or their coded bits value after the photons transmission is completed. Moreover, the proposed SQSDC protocol can be implemented with the existing techniques. Compared with many quantum secure direct communication protocols, the proposed SQSDC protocol has two merits: firstly the sender only needs classical capabilities; secondly to check Eves disturbing after the transmission of quantum states, no additional classical information is needed.  相似文献   

18.
We present a remote three-party quantum state sharing (QSTS) schemewith three-atom Greenberger-Horne-Zeilinger (GHZ) states assisted bycavity QED and flying qubits. It exploits some photons to act as the flying qubits for setting up the quantum channel securely with three-atom systems in a GHZ state, which maybe make this remote QSTS scheme more practical than some other schemes based on atom systems only or ion-trap systems as photons interact with their environments weakly. The coherence of the stationary atom qubits in cavities provides the convenience for the parties in QSTS to check eavesdropping, different from entangled photon systems. Moreover, the present scheme works in a collective-noise condition and it may be more practical than others in applications in future.  相似文献   

19.
We propose an authenticated quantum dialogue protocol, which is based on a shared private quantum entangled channel. In this protocol, the EPR pairs are randomly prepared in one of the four Bell states for communication. By performing four Pauli operations on the shared EPR pairs to encode their shared authentication key and secret message, two legitimate users can implement mutual identity authentication and quantum dialogue without the help from the third party authenticator. Furthermore, due to the EPR pairs which are used for secure communication are utilized to implement authentication and the whole authentication process is included in the direct secure communication process, it does not require additional particles to realize authentication in this protocol. The updated authentication key provides the counterparts with a new authentication key for the next authentication and direct communication. Compared with other secure communication with authentication protocols, this one is more secure and efficient owing to the combination of authentication and direct communication. Security analysis shows that it is secure against the eavesdropping attack, the impersonation attack and the man-in-the-middle (MITM) attack.  相似文献   

20.
尹逊汝  马文平  申冬苏  王丽丽 《物理学报》2013,62(17):170304-170304
提出了基于两粒子纠缠态的一个三方量子密钥协商协议. 方案中的三个参与者是完全对等的, 且对建立的共享密钥具有相同的贡献. 除此之外, 三方中的任何一方或两方都不能事先单独决定共享密钥. 安全分析表明本协议既能抵抗外部窃听者的攻击, 又能抵抗内部参与者攻击. 关键词: 量子密码学 量子密钥协商 Bell态  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号