首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A surface plasmon resonance (SPR) sensor integrating a small sensor probe, a laser emission diode, a photo detector, and a polarizer was developed as a portable sensing device. The sensor probe was made with a glass cylinder, 50 mm long and 1.5 mm in diameter, that was connected directly to a beam splitter without optical fibers. The SPR spectrum obtained with this probe system showed a 10% reflectivity minimum at 690 nm. Shifts of the SPR spectrum induced by refractive index (RI) changes in the sample were measured by detecting the reflection light intensity at 670 nm. When the sensitivity was compared using a BIAcore™ SPR instrument, the lowest sensor response of 1 mV observed with the SPR probe system coincided with 1.4 × 10−6 of the RI changes. The RI resolution of the SPR probe was estimated with experimentally evaluated noise on the signal, and, consequently, it was concluded that the RI resolution was 1.2 × 10−5. Moreover, immunoreaction was demonstrated with adsorbed bovine serum albumin (BSA) and anti-BSA antibody as an analyte. As a result, 50 ng mL−1 of the lower detection limit was estimated.  相似文献   

2.
Olivier R. Bolduc 《Talanta》2009,77(5):1680-26
Wavelength interrogation surface plasmon resonance (SPR) spectroscopy using a dove prism combines a simple and inexpensive optical design with high-resolution refractive index monitoring and biosensing. A BK7 dove prism inverts an optical image with a total internal reflection angle of 72.8°, an angle active in SPR. Hence, a unique system can accomplish SPR biosensing using wavelength interrogation and also perform SPR imaging. This optical configuration advantageously uses a single axis optical path between each optical component, simplifying the optical design of SPR instruments without compromise of the analytical performance. Fluidics were also incorporated to the instrument design for efficient sample delivery. The SPR instrument is characterized in terms of refractive index (RI) sensitivity, RI resolution, reproducibility, and application for monitoring low concentration biological events. Data analysis methodologies are compared for improved resolution of the measured response. Raw data analyzed using a minimum hunting procedure results in RI resolution in the 10−6 range, while pre-treating data with singular value decomposition improves the resolution by one order of magnitude. Depending on the spectrophotometer employed, the RI range accessible can be easily tuned; examples with a 550-850 nm and a 550-1100 nm spectrophotometers are shown and results respectively in RI ranges of 1.32-1.39 RIU and 1.32-1.42 RIU. Monitoring of μM concentration of β-lactamase is performed using the wavelength interrogation configuration of the biosensor. Finally, a SPR image of a surface with a water droplet (volume = 500 nL) was obtained using the dove prism SPR with a band pass filter and a CCD camera. SPR using a dove prism configuration combines advantages of portable SPR instruments, SPR imagers and research-grade SPR instruments in a unique platform.  相似文献   

3.
Here we report a reusable DNA single‐walled carbon nanotube (SWNT)‐based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine (Cys) in aqueous solution. SWNTs can effectively quench the fluorescence of dye‐labeled single‐stranded DNA due to their strong π–π stacking interactions. However, upon incubation with Ag+, Ag+ can induce stable duplex formation mediated by C–Ag+–C (C=cytosine) coordination chemistry, which has been further confirmed by DNA melting studies. This weakens the interactions between DNA and SWNTs, and thus activates the sensor fluorescence. On the other hand, because Cys is a strong Ag+ binder, it can remove Ag+ from C–Ag+–C base pairs and deactivates the sensor fluorescence by rewrapping the dye‐labeled oligonucleotides around the SWNT. In this way, the fluorescence signal‐on and signal‐off of a DNA/SWNT sensor can be used to detect aqueous Ag+ and Cys, respectively. This sensing platform exhibits high sensitivity and selectivity toward Ag+ and Cys versus other metal ions and the other 19 natural amino acids, with a limit of detection of 1 nM for Ag+ and 9.5 nM for Cys. Based on these results, we have constructed a reusable fluorescent sensor by using the covalent‐linked SWNT–DNA conjugates according to the same sensing mechanism. There is no report on the use of SWNT–DNA assays for the detection of Ag+ and Cys. This assay is simple, effective, and reusable, and can in principle be used to detect other metal ions by substituting C–C base pairs with other native or artificial bases that selectively bind to other metal ions.  相似文献   

4.
Kim YC  Banerji S  Masson JF  Peng W  Booksh KS 《The Analyst》2005,130(6):838-843
Fiber-optic sensors based on surface plasmon resonance (SPR) for direct refractive index (RI) measurements of samples with the RI between 1.00 and 1.30 are described. Most applications of SPR sensors are designed to function near the refractive index of water (1.3330 RI). The RI changes of aqueous solution (RI, ca. 1.34) can easily be monitored by silica-fiber (RI, 1.4601 at 550 nm) based SPR sensor. With regard to gas species detection, the fiber-optic SPR sensor must be modified for sensitivity to changes in refractive index near 1.0008 (i.e., RI of air). However, the silica waveguide has a prohibitively high RI for unmodified monitoring of the RI changes of gas. The silica-fiber based SPR probe design presented here is based upon the modification of the probe geometry to the ability to tune the SPR coupling wavelength/angle pair. In this study, the tapered silica-based fiber SPR sensors are shown to directly determine the RI changes of gas species and the density change of dry air.  相似文献   

5.
Liu X  Song D  Zhang Q  Tian Y  Zhang H 《Talanta》2004,62(4):773-779
Surface plasmon resonance (SPR) has been successfully applied for the simple, rapid, and label-free assay of various biomolecules. This assay evaluates a novel wavelength modulation SPR biosensor for the detection of tetanus toxin. The wavelength modulation SPR biosensor is designed based on fixing the incident angle of light and measuring the reflected intensities in the resonance wavelength range spanning 400-800 nm simultaneously. Tetanus toxin (TeNT), one of the most potent toxins known, is synthesized as a 150 kDa single polypeptide chain. The SPR biosensor has been shown to be capable of directly detecting concentration of tetanus toxin as low as 0.028 Lf ml−1. Under selected experimental conditions, the SPR biosensor has a good reproducibility, sensitivity and reversibility. The results illustrate how wavelength modulation SPR biosensor can be used to detect biomolecular interactions.  相似文献   

6.
Kim YC  Masson JF  Booksh KS 《Talanta》2005,67(5):908-917
Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance (SPR) for refractive index (RI) measurements of aqueous and hydrothermal water solutions are described. Accurate measurement of RIs is essential to efficient operation and control of broad range of engineering processes. Some of these processes are carried out with harsh environments, such as high-temperature, high pressure, and chemical corrosion. These extreme physical conditions are proving a limiting factor in application of the conventional silica-based optical sensors. Single-crystal sapphire is an ideal material for sensor applications, where reliable performance is required in the extreme environment conditions. With regard to the liquid species detection, most applications of SPR sensors are designed to function near the refractive index of water (1.3330 RI). The RI changes of aqueous solution can be easily monitored by silica-fiber (RI, 1.4601 at 550 nm) based SPR sensor. However, the sapphire waveguide has a prohibitively high RI (1.7708 at 546 nm) for unmodified monitoring of the RI changes of aqueous solutions. For that purpose, a practical SPR probe geometry has been applied to the ability to tune the SPR coupling wavelength/angle pair with sapphire-fiber based SPR probe.  相似文献   

7.
A borondipyrrolemethene-based compound (1) is synthesized and used as a “turn-on” fluorescent probe for silver ions (Ag+). The probe displays highly sensitive fluorescence response toward Ag+ with a 40-fold fluorescence enhancement when 60 μM of Ag+ is added. The fluorescence intensity of the probe is linearly dependent on Ag+ concentration ranging from 0.05 to 60 μM. And the detection limit (LOD) can reach 0.02 μM, which complies with the standard of World Health Organization (WHO) for drinking water (0.9 μM). Moreover, the probe shows remarkable selectivity for Ag+ over other metal ions. Furthermore, the response behavior of 1 toward Ag+ is pH independent in the neutral range from 6.0 to 8.0. The response of 1 toward Ag+ is fast (response time is less than 2 min) and reversible chemically. What’s more, the sensing mechanism of probe 1 toward Ag+ is verified by mass spectra (MS) and density functional theory (DFT) calculations. In particular, the probe is applied for detection of Ag+ in water samples and living cells successfully.  相似文献   

8.
Nine monoazathiacrown ethers have been synthesized and explored as ionophores for polymeric membrane Ag+-selective electrodes. Potentiometric responses reveal that the ion-selective electrodes (ISEs) based on 2,2′-thiodiethanethiol derivatives can exhibit excellent selectivities toward Ag+. The plasticized poly(vinyl chloride) membrane electrode using 22-membered N2S5-ligand as ionophore has been characterized and its logarithmic selectivity coefficients for Ag+ over most of the interfering cations have been determined as <−8.0. Under optimal conditions, a lower detection limit of 2.2 × 10−10 M can be obtained for the membrane Ag+-ISE.  相似文献   

9.
10.
The reactions of silver ion complexes with polyethylene-graft-poly(acrylic acid) (PE-g-AA) and the olefin reversible coordinates with the PE-g-AA–Ag+ complex membranes were studied. Infrared and nuclear magnetic resonance spectra confirmed the complex formation between the carboxylic acid of the PE-g-AA and the Ag+ ion. Also, the Ag+ ion in PE-g-AA-Ag+ membrane was assumed to be a fixed carrier that adsorbs and transports olefin, thereby causing a selective olefin/paraffin separation. A theoretical model of the PE-g-AA-Ag+ (olefin) complex was proposed. The coordination number of Ag+ ion binding to the carboxylic acid of PE-g-AA is about 1.6 in glycerol solution. The coordination number of olefin binding to the Ag+ in the PE-g-AA–Ag+ complex membrane is 1. Moreover, the kinetics of olefin binding to the PE-g-AA–Ag+ complex membranes were studied. The equilibrium, association, and dissociation constants were also presented. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 909–917, 1997  相似文献   

11.
A laboratory-made surface plasmon resonance (SPR) instrument based on the detection of resonance excitation wavelength has been successfully fabricated. The performance and workability of the SPR instrument was demonstrated as a DNA biosensor. Biotinylated single-stranded oligonucleotides (ssDNA) were chemically immobilized on a gold-film surface of the SPR instrument as a DNA probe for the detection of its fully complementary, half-complementary and non-complementary ssDNA. The immobilization of the ssDNA probe was done by avidin-biotin linkage. The ssDNA used were 12-mer oligonucleotides. The sensing mechanism was based on the shift in resonance wavelength of an excitation light beam as the target ssDNA hybridized with the ssDNA on the gold-film surface. The linear dynamic ranges of the DNA biosensor for fully complementary and half-complementary ssDNA are 0.04-1.2 pM and 0.08-1.1 pM, respectively. The DNA biosensor showed higher sensitivity to fully complementary ssDNA than to half-complementary ssDNA. But no shift of resonance wavelength to the non-complementary ssDNA was observed.  相似文献   

12.
Yu-Lun Hung  Yi-You Chen 《Talanta》2010,82(2):516-405
We have developed a simple, colorimetric and label-free gold nanoparticle (Au NP)-based probe for the detection of Pb2+ ions in aqueous solution, operating on the principle that Pb2+ ions change the ligand shell of thiosulfate (S2O32−)-passivated Au NPs. Au NPs reacted with S2O32− ions in solution to form Au+·S2O32− ligand shells on the Au NP surfaces, thereby inhibiting the access of 4-mercaptobutanol (4-MB). Surface-assisted laser desorption/ionization time-of-flight ionization mass spectrometry (SALDI-TOF MS) and inductively coupled plasma mass spectrometry (ICP-MS) measurements revealed that PbAu alloys formed on the surfaces of the Au NPs in the presence of Pb2+ ions; these alloys weakened the stability of the Au+·S2O32− ligand shells, enhancing the access of 4-MB to the Au NP surfaces and, therefore, inducing their aggregation. As a result, the surface plasmon resonance (SPR) absorption of the Au NPs red-shifted and broadened, allowing quantitation of the Pb2+ ions in the aqueous solution. This 4-MB/S2O32−-Au NP probe is highly sensitive (linear detection range: 0.5-10 nM) and selective (by at least 100-fold over other metal ions) toward Pb2+ ions. This cost-effective sensing system allows the rapid and simple determination of the concentrations of Pb2+ ions in real samples (in this case, river water, Montana soil and urine samples).  相似文献   

13.
《Analytical letters》2012,45(7):1241-1253
This work deals with the evaluation of different thiacalix[4]arene derivatives included in polymeric PVC membranes for the optical sensing of metallic cations. Two ligands have been studied: thiacalix[4]arene (ligand 4) and its p-tert-butyl-derivative (ligand 2). Membranes including ligand 4 were tested for different metals and better results were obtained for Cd2+, Ag+, and Pb2+. In the case of films incorporating the neutral ionophore, ligand 2, a pH sensitive dye (ETH 2439), and an anionic additive were also added. A selective response to Ag+ was achieved in acetate buffer at pH 5.  相似文献   

14.
A new nano-sized silver(I) ion-imprinted polymer (IIP) was prepared via precipitation copolymerization using ethyleneglycol dimethacrylate, as a cross-linking agent in the presence of Ag+ and an aza-thioether crown containing a 1,10-phenanthroline subunit as a highly selective complexing agent. The imprint silver(I) ion was removed from the polymeric matrix using a 1.0 M HNO3 solution. The resulting powder material was characterized using IR spectroscopy and scanning electron microscopy. The SEM micrographs showed colloidal nanoparticles of about 52 nm and 75 nm in diameter and slightly irregular in shape for leached and unleached IIPs, respectively. The optimal pH for quantitative enrichment was 6.0 and maximum sorbent capacity of the prepared IIP for Ag+ was 18.08 μmol g−1. The relative standard deviation and limit of detection (LOD = 3Sb/m) for flame atomic absorption spectrometric determination of silver(I) ion, after its selective extraction by the prepared IIP nanobeads, were evaluated as 2.42% and 2.2 × 10−8 M, respectively. The new Ag+-IIP was also applied as a suitable sensing element to the preparation of highly selective and sensitive voltammetric and potentiometric sensors for ultra trace detection of silver(I) ion in water samples, with limits of detection of 9.0 × 10−10 and 1.2 × 10−9 M, respectively.  相似文献   

15.
A surface plasmon resonance (SPR)-based biosensor was developed for simple diagnosis of severe acute respiratory syndrome (SARS) using a protein created by genetically fusing gold binding polypeptides (GBPs) to a SARS coronaviral surface antigen (SCVme). The GBP domain of the fusion protein serves as an anchoring component onto the gold surface, exploiting the gold binding affinity of the domain, whereas the SCVme domain is a recognition element for anti-SCVme antibody, the target analyte in this study. SPR analysis indicated the fusion protein simply and strongly self-immobilized onto the gold surface, through GBP, without surface chemical modification, offering a stable and specific sensing platform for anti-SCVme detection. AFM and SPR imaging analyses demonstrated that anti-SCVme specifically bound to the fusion protein immobilized onto the gold-micropatterned chip, implying that appropriate orientation of bound fusion protein by GBP resulted in optimal exposure of the SCVme domain to the assay solution, resulting in efficient capture of anti-SCVme antibody. The best packing density of the fusion protein onto the SPR chip was achieved at the concentration of 10 μg mL−1; this density showed the highest detection response (906 RU) for anti-SCVme. The fusion protein-coated SPR chip at the best packing density had a lower limit of detection of 200 ng mL−1 anti-SCVme within 10 min and also allowed selective detection of anti-SCVme with significantly low responses for non-specific mouse IgG at all tested concentrations. The fusion protein provides a simple and effective method for construction of SPR sensing platforms permitting sensitive and selective detection of anti-SCVme antibody.  相似文献   

16.
Label-free Hg2+ aptamer was used as a sensing element and the PicoGreen dye was specific to ultra-sensitive double-stranded DNA (dsDNA), which achieved novel fluorescence assay for detection of both mercury and silver ions. In this aptasensor, Hg2+ bound to thymidine (T) to form T–Hg2+-T base pairs and Ag+ specifically interacted with C–C mismatches to produce C–Ag+–C base pairs. The conformation changes prevented the aptamer from binding to its complementary sequences to form dsDNA and caused a fluorescence intensity decrease with PicoGreen. The change in the fluorescence intensity made it possible to detect both Hg2+ and Ag+ in a dose-dependent manner. The sensing system could detect as low as 5 × 10–8 mol/L of Hg2+ and 9.3 × 10–10 mol/L of Ag+. The fluorescent intensity changes in the system were specific for Hg2+ and Ag+, making this simple and cost-effective method extremely valuable in its future applications in monitoring Hg2+ and Ag+ pollution in environmental analysis.  相似文献   

17.
A new type of fluorescent probe capable of detecting Ag+ and Hg2+ in two independent channels was developed in the present work. Specifically, in CH3CN–MOPS mixed solvents with CH3CN/MOPS ratio (v/v) of 15/85, this type of probe fluoresced weakly, and the addition of Ag+ remarkably induced fluorescence enhancement of the probe. In CH3CN–MOPS mixed solvents with the percentage of CH3CN increased up to 65%, the probe was highly fluorescent and addition of Hg2+ dramatically induced the fluorescence quenching. Thus, using such single-fluorophore-based probe and tuning the polarity of the mixed solvent, Ag+, and Hg2+ can be detected in independent channels with high selectivity and sensitivity. As a result, the mutual interference usually encountered in most cases of Ag+ and Hg2+ sensing owing to the similar fluorescence response that these two ions induced, can be effectively circumvented by using the probes developed herein.  相似文献   

18.
In this article, we investigated the sequence specific interaction of single (ssDNA) and double stranded (dsDNA) with silver ions (Ag+) with electrochemical methods. We, for the first time, examined the effect of base sequences, base content and physiochemical properties of different DNA sequences on interaction with Ag+ in detail. We used different base contents to show how the composition of nucleic acid influences the electrochemical signals. We first immobilized ssDNA probes on bare graphite electrodes. Then, we showed the sequence effect on oxidation signals of AgDNA complex by sensing Ag+ to the probe coated surfaces to interact with different ssDNA sequences. Furthermore, we investigated the effect of Ag+ on dsDNA. We measured the oxidation signals obtained from Ag+‐ssDNA and Ag+‐dsDNA complex at approximately 0.2 V and 1.0 V (vs Ag/AgCl), respectively with Differential Pulse Voltammetry (DPV). We showed that the oxidation signals of the AgDNA complex obtained from dsDNA‐modified electrodes is higher than the electrodes modified with ssDNA. More importantly, we showed that Ag+‐ssDNA and Ag+ ion‐dsDNA exhibit different electrochemical behaviors.  相似文献   

19.
Ag nanocrystals embedded silicate glass was successfully prepared by solid-state field-assisted diffusion, combined with post-annealing process. The changes of glass structure, the chemical states of Ag and O species, the microstructures of Ag nanocrystals, as well as the properties of optical absorption were studied for the as-diffused and post-annealed samples. The result showed that after the field-assisted diffusion process, some Ag+ ions replaced the alkaline ions in the glass matrix. Meanwhile, other Ag+ ions were reduced to Ag0 atoms occupying the interspaces of the network and Ag0 atoms clusters with small size were formed. This caused the relaxation of the glass network and the deceasing of force constant for Si–O linkage. After post-annealing process, bigger size of Ag nanoparticles were formed, which caused the peak corresponding to the surface plasmon resonance (SPR) observed.  相似文献   

20.
采用自组装表面等离子体子共振(SPR)传感装置,固定入射角,以波长为变量,以CCD为检测系统,用对金和抗体均有较强吸附作用的葡萄球菌A蛋白作为基底膜,观测了人心肌肌钙蛋白I的抗体和抗原之间免疫反应的动力学过程,并进行了人心肌肌钙蛋白I的定量测定.结果表明,人心肌肌钙蛋白I的浓度在5.0~50μg/L范围内与传感器的响应值呈线性关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号