首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, investigations of the magnetic microstructure of anisotropic sintered SmCo5 permanent magnets with high coercivity have been made using the colloid-scanning electron microscopy (SEM) technique and magnetic force microscopy (MFM). The magnets were produced by powder metallurgy (sintering) process and consisted of oriented grains with an average size of about 20 μm. They were studied in the thermally demagnetized state. Owing to the application of digital image recording, enhancement and analysis, high-quality images of the magnetic microstructure were obtained and analyzed not only qualitatively but also quantitatively. Improvements over previous results were achieved. The grains show the presence of magnetic domains, as expected. At the surface perpendicular to the alignment axis, the coarse domain structure in the form of a maze pattern with surface reverse spikes is observed. The main (maze) domains had typical widths 3–5 μm. The reverse spike domains were imaged as circles typically 1–2 μm in diameter or as elongated regions up to about 6 μm in length. Interestingly, in addition to the coarse maze domains and reverse spikes near the surface, a fine surface domain structure is revealed with MFM. The fine scale domains are found to be magnetized perpendicular to the surface and their occurrence is attributed to further reduction of the magnetostatic energy at the cost of a larger domain wall energy. On the surface parallel to the alignment axis, the main domains within individual grains are imaged as stripe domains with domain walls running approximately parallel to the alignment axis, while reverse spike domains are displayed in the form of triangular domains and occur near some grain boundaries, pores or precipitations. The magnetic alignment of grains was found to be good, but certainly not perfect. In most cases the domain structures within grains were independent of their neighbors, but in some cases (not so rare) observations indicated the existence of significant magnetostatic coupling between neighboring grains. The main and surface domain widths were determined by digital means using the stereologic method of Bodenberger and Hubert. Moreover, the domain wall energy and other intrinsic parameters for the studied magnets were determined.  相似文献   

2.
Cleaved NiO(1 0 0) surfaces were imaged with atomic force microscopy (AFM) to determine defect concentrations and morphology. Random 〈0 1 0〉 and 〈0 0 1〉 oriented steps, which have been previously characterized, were the most common defect observed on the cleaved surface and formed with step heights in multiples of 2.1 Å, the Ni-O nearest-neighbor distance, and terrace widths in the range of 25-100 nm. In addition, the surface showed novel mesoscale (∼0.5-2 μm) square pyramidal defects with the pyramid base oriented along 〈1 0 0〉 symmetry related directions. Upon etching, the pyramidal defects converted to more stable cubic pits, consistent with (1 0 0) symmetry related walls. The square pyramidal pits tended to cluster or to form along step edges, where the weakened structure is more susceptible to surface deformations. Also, a small concentration of square pyramidal pits, oriented with the base of the pyramid along 〈0 1 1〉, was observed on the cleaved NiO surfaces. For comparison purposes, chemical mechanical polished (CMP) NiO(1 0 0) substrates were imaged with AFM. Defect concentrations were of comparable levels to the cleaved surface, but showed a different distribution of defect types. Long-ranged stepped defects were much less common on CMP substrates, and the predominant defects observed were cubic pits with sidewalls steeper than could be accurately measured by the AFM tip. These defects were similar in size and structure to those observed on cleaved NiO(1 0 0) surfaces that had been acid etched, although pit clustering was more pronounced for the CMP surfaces.  相似文献   

3.
赵卫  张小秋 《光学学报》1993,13(6):15-519
描述了用高功率脉冲激光打靶产生的等离子体作为软X-射线源而进行的近贴显微研究,并得到了分辨率好于1μm的结果.  相似文献   

4.
We present near-cellular-resolution magnetic resonance (MR) images of an unanesthetized animal, the blowfly Sarcophaga bullata. Immobilized flies were inserted into a home-built gradient probe in a 14.1-T magnet, and images of voxel size (20-40 microm)(3)--comparable to the diameter of many neuronal cell bodies in the fly's brain--were obtained in several hours. Use of applied field gradients on the order of 60 G/cm allowed minimally distorted images to be produced, despite significant susceptibility differences across the specimen. The images we obtained have exceptional contrast-to-noise levels; comparison with histology-based anatomical information shows that the MR microscopy faithfully represents patterns of nervous tissue and allows distinct brain regions to be clearly identified. Even at the highest resolutions we explored, morphological detail was pronounced in the apparent absence of instabilities or movement-related artifacts frequently observed during imaging of live animal specimens. This work demonstrates that the challenges of noninvasive in vivo MR microscopy can be overcome in a system amenable to studies of brain structure and physiology.  相似文献   

5.
Processing the SrTiO(3)(001) surface results in the self-assembly of reduced titanate nanowires whose widths are approximately 1 nm. We have imaged these nanowires and their defects at elevated temperatures by atomic resolution scanning tunneling microscopy. The nanowire structure is modeled with density functional theory, and defects observed in the center of the nanowire are determined to be Ti(4)O(3) vacancy clusters. The activation energy for Ti(4)O(3) vacancy cluster diffusion is explicitly measured as 4.98±0.17 eV with an exponential prefactor of μ=6.57×10(29) (s(-1).  相似文献   

6.
Ballistic phonon propagation in single crystals has been used for imaging defect structures in bulk material. We have realized this principle by means of low-temperature scanning electron microscopy. As model cases we have imaged laser drilled holes in single-crystalline sapphire and -quartz samples. Comparing the acoustic images with those obtained by optical transmission microscopy, we found that fine structure seen optically was well reproduced acoustically. In addition strain fields due to plastic deformations could clearly be imaged acoustically. The spatial resolution of our imaging technique is estimated to be a few micrometer. By using two or more phonon detectors, three-dimensional imaging of spatial inhomogeneities becomes possible.  相似文献   

7.
The availability of high-brilliance X-ray sources, high-precision X-ray focusing optics and very efficient CCD area detectors has contributed essentially to the development of transmission X-ray microscopy (TXM) and X-ray computed tomography (XCT) with sub-50 nm resolution. Particularly, the fabrication of high aspect ratio Fresnel zone plates with zone widths approaching 15 nm has contributed to the enormous improvement in spatial resolution during the previous years. Currently, Fresnel zone plates give the ability to reach spatial resolutions of 15 to 20 nm in the soft and of about 30 to 50 nm in the hard X-ray energy range. X-ray microscopes with rotating anode X-ray sources that can be installed in an analytical lab next to a semiconductor fab have been developed recently. These unique TXM/XCT systems provide an important new capability of nondestructive 3D imaging of internal circuit structures without destructive sample preparation such as cross sectioning. These lab systems can be used for failure localization in micro- and nanoelectronic structures and devices, e.g., to visualize voids and residuals in on-chip metal interconnects without physical modification of the chip. Synchrotron radiation experiments have been used to study new processes and materials that have to be introduced into the semiconductor industry. The potential of TXM using synchrotron radiation in the soft X-ray energy range is shown for the nondestructive in situ imaging of void evolution in embedded on-chip copper interconnect structures during electromigration and for the imaging of different types of insulating thin films between the on-chip interconnects (spectromicroscopy).  相似文献   

8.
The line widths, pressure-induced shifts, and center frequency of the J = 1-0, K = 0 phosphine transition at 266.9 Ghz have been determined. The widths and shifts are reported for collisions with phosphine, H2 and He.  相似文献   

9.
Different smoothened blanks have been studied in partially coherent white light illumination to assess the possible maximum resolutions that can be obtained. The object can be placed either in contact with the diffuser or can be imaged onto the diffuser. Lower resolution is obtained in the latter case, which could be good enough for many practical requirements.  相似文献   

10.
The spatial encoding technique can be used to accelerate the acquisition of multi-dimensional nuclear magnetic resonance spectra. However, with this technique, we have to make trade-offs between the spectral width and the resolution in the spatial encoding dimension (F1 dimension), resulting in the difficulty of covering large spectral widths while preserving acceptable resolutions for spatial encoding spectra. In this study, a selective shifting method is proposed to overcome the aforementioned drawback. This method is capable of narrowing spectral widths and improving spectral resolutions in spatial encoding dimensions by selectively shifting certain peaks in spectra of the ultrafast version of spin echo correlated spectroscopy (UFSECSY). This method can also serve as a powerful tool to obtain high-resolution correlated spectra in inhomogeneous magnetic fields for its resistance to any inhomogeneity in the F1 dimension inherited from UFSECSY. Theoretical derivations and experiments have been carried out to demonstrate performances of the proposed method. Results show that the spectral width in spatial encoding dimension can be reduced by shortening distances between cross peaks and axial peaks with the proposed method and the expected resolution improvement can be achieved. Finally, the shifting-absent spectrum can be recovered readily by post-processing.  相似文献   

11.
Schwarzschild microscope at 18.2 nm for diagnostics of hot electron transport in femtosecond laser-plasma interaction has been developed. Based on the third-order aberration theory the microscope is designed for numerical aperture of 0.1 and magnification of 10. Mo/Si multilayer films with peak throughput at 18.2 nm is designed and deposited by magnetron sputtering method. The 24 lp/mm copper mesh is imaged via Schwarzschild microscope, and resolutions of less than 3 μm are measured in 1.2 mm field. The diagnostics experiment of hot electron transport is performed on 286 TW SILEX-I laser facilities, and the spatial distribution of radiation caused by hot electron is imaged by Schwarzschild microscope.  相似文献   

12.
Direct laser writing has become a versatile and routine tool for the mask‐free fabrication of polymer structures with lateral linewidths down to less than 100 nm. In contrast to its planar counterpart, electron‐beam lithography, direct laser writing also allows for the making of three‐dimensional structures. However, its spatial resolution has been restricted by diffraction. Clearly, linewidths and resolutions on the scale of few tens of nanometers and below are highly desirable for various applications in nanotechnology. In visible‐light far‐field fluorescence microscopy, the concept of stimulated emission depletion (STED) introduced in 1994 has led to spectacular record resolutions down to 5.6 nm in 2009. This review addresses approaches aiming at translating this success in optical microscopy to optical lithography. After explaining basic principles and limitations, possible depletion mechanisms and recent lithography experiments by various groups are summarized. Today, Abbe's diffraction barrier as well as the generalized two‐photon Sparrow criterion have been broken in far‐field optical lithography. For further future progress in resolution, the development of novel tailored photoresists in combination with attractive laser sources is of utmost importance.  相似文献   

13.
ABSTRACT

The partial widths and the branching ratios have been calculated for 2-channel systems, using the diagonalisation of a 2-channel full Hamiltonian and the J-matrix quantities related to the free Hamiltonian, for resonance states with different orbital angular momentum ? (? = 0, 1, 2, 3) and different charge z (z = +1,?0,?? 1) for Noro and Taylor potential. Moreover, the 1- and 2-channel Morse potential have been investigated for the two diatomic molecules H2 and LiH. The basis used is the Laguerre basis. Two approximate methods have been used to calculate the widths and the ratios associated with a spinless projectile?target system. Many results are reported here for the first time, including the results of ? ≠ 0 and z ≠ 0 in 2-channel Noro and Taylor potential, and the results for the two diatomic molecules. The comparison of our outcome with earlier studies, wherever possible, on energies, branching ratios and partial widths, is discussed.  相似文献   

14.
《Surface science》1993,281(3):L335-L340
Carbon nanotubes, fabricated by the Ebbesen-Ajayan method, were imaged using scanning tunneling microscopy (STM) and atomic force microscopy (AFM) in air and were compared to images obtained with high-resolution transmission electron microscopy (HRTEM). The HRTEM images revealed an abundance of elongated structures ranging in diameter from 3.0 to 30 nm, and with lengths of up to 0.8 μm. Many of the structures possessed several graphitic shells as if the tubes were nested one in the other. Reproducible images of the tubular structures, typically 20 nm in diameter and with a large variation in length, were obtained with both STM and AFM when the nanotubes were deposited on hydrogen-terminated Si(111), confirming that the nested structures observed with HRTEM do indeed have a tubular morphology. No single-walled, bare nanotubes or spherical fullerenes (typical of the Krätschmer-Huffman process) were observed.  相似文献   

15.
This article reports the parameters and characteristics of the new type of HgCdTe buried photodiodes operated at near-room temperature (T=200–300 K) in long wavelength infrared spectral range. The liquid phase epitaxy (LPE) Hg1−xCdxTe (x=0.16–0.20) layers were grown on holes etched in (1 0 0) CdZnTe substrate. Prior to layer deposition, the CdZnTe substrate has been etched to form the bars on 30 μm centers and 20-μm depth. Next, 20-μm thick HgCdTe epitaxial layer has been grown from Te-rich solution. The type of conductivity was controlled by deliberately doping with indium (n-type) and Sb (p-type). The Nomarski microscopy showed that the surface of specially prepared layers was flat and the composition of layers, measured by Fourier transform infrared microscopy, was homogenous. Samples were cleaved and examined in cross section by scanning electron microscopy. Finally, serial connected multi-junction photodiodes have been fabricated. It is shown that LPE can be used to realise advanced bandgap engineered multi-junction structures. This conclusion is supported by device quality characteristics: spectral response and detectivity.  相似文献   

16.
《Surface science》1994,311(3):L731-L736
Single-shell carbon nanotubes, approximately 1 nm in diameter, have been imaged for the first time by atomic force microscopy operating in both the contact and tapping modes. For the contact mode, the height of the imaged nanotubes has been calibrated using the atomic steps of the silicon substrate on which the nanotubes were deposited. For the tapping mode, the calibration was performed using an industry-standard grating. The paper discusses substrate and sample preparation methods for the characterization by scanning probe microscopy of nanotubes deposited on a substrate.  相似文献   

17.
Knowing the relationship between three‐dimensional structure and properties is paramount for complete understanding of material behavior. In this work, the internal nanostructure of micrometer‐size (~10 µm) composite Ni/Al particles was analyzed using two different approaches. The first technique, synchrotron‐based X‐ray nanotomography, is a nondestructive method that can attain resolutions of tens of nanometers. The second is a destructive technique with sub‐nanometer resolution utilizing scanning electron microscopy combined with an ion beam and `slice and view' analysis, where the sample is repeatedly milled and imaged. The obtained results suggest that both techniques allow for an accurate characterization of the larger‐scale structures, while differences exist in the characterization of the smallest features. Using the Monte Carlo method, the effective resolution of the X‐ray nanotomography technique was determined to be ~48 nm, while focused‐ion‐beam sectioning with `slice and view' analysis was ~5 nm.  相似文献   

18.
19.
We have investigated the influence of the native oxide layer on semiconductor surfaces on the imaging properties of the atomic force microscope operated under ambient conditions by using epitaxial In1–x Ga x As layers grown by Metal-Organic Chemical Vapour Deposition (MOCVD) on (001) oriented InP substrates which have been kept under ambient conditions for two years. The thickness and composition of the native oxide layers were studied with ellipsometry and X-ray photoelectron spectroscopy, respectively. Subsequently, the sample surfaces were imaged by means of atomic force microscopy operated in air which revealed terrace structures separated by monoatomic steps. The obtained data were compared with the surface morphology which can be expected from the MOCVD growth process. The results suggest that an accurate study of semiconductor layer growth by atomic force microscopy in air is possible.  相似文献   

20.
王成杰  石发展  王鹏飞  段昌奎  杜江峰 《物理学报》2018,67(13):130701-130701
纳米级分辨率的磁场测量和成像是磁学中的一种重要研究手段.金刚石中的单个氮-空位点缺陷电子自旋作为一种量子传感器,具有灵敏度高、原子级别尺寸、可工作在室温等诸多优势,灵敏度可以达到单核自旋级别,空间分辨率达到亚纳米.将这种磁测量技术与扫描成像技术结合,能够实现高灵敏度和高分辨率的磁场成像,定量地重构出杂散场.这种新型的磁成像技术可以给出磁学中多种重要的研究对象如磁畴壁、反铁磁序、磁性斯格明子的结构信息.随着技术的发展,基于氮-空位点缺陷的磁成像技术有望成为磁性材料研究的重要手段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号