首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Novel mesoscale defect structure on NiO(1 0 0) surfaces by atomic force microscopy
Authors:SC Petitto  MA Langell
Institution:a Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
b Department of Chemistry, University of Kansas, Lawrence, KS 66045-7582, United States
Abstract:Cleaved NiO(1 0 0) surfaces were imaged with atomic force microscopy (AFM) to determine defect concentrations and morphology. Random 〈0 1 0〉 and 〈0 0 1〉 oriented steps, which have been previously characterized, were the most common defect observed on the cleaved surface and formed with step heights in multiples of 2.1 Å, the Ni-O nearest-neighbor distance, and terrace widths in the range of 25-100 nm. In addition, the surface showed novel mesoscale (∼0.5-2 μm) square pyramidal defects with the pyramid base oriented along 〈1 0 0〉 symmetry related directions. Upon etching, the pyramidal defects converted to more stable cubic pits, consistent with (1 0 0) symmetry related walls. The square pyramidal pits tended to cluster or to form along step edges, where the weakened structure is more susceptible to surface deformations. Also, a small concentration of square pyramidal pits, oriented with the base of the pyramid along 〈0 1 1〉, was observed on the cleaved NiO surfaces. For comparison purposes, chemical mechanical polished (CMP) NiO(1 0 0) substrates were imaged with AFM. Defect concentrations were of comparable levels to the cleaved surface, but showed a different distribution of defect types. Long-ranged stepped defects were much less common on CMP substrates, and the predominant defects observed were cubic pits with sidewalls steeper than could be accurately measured by the AFM tip. These defects were similar in size and structure to those observed on cleaved NiO(1 0 0) surfaces that had been acid etched, although pit clustering was more pronounced for the CMP surfaces.
Keywords:Nickel oxide  Scanning probe techniques  Surface structure  Surface morphology  Topography
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号