首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Nam T.S. Phan 《Tetrahedron》2005,61(51):12065-12073
A polymer-supported palladium(II) salen-type complex exhibited catalytic activity in the cross-coupling reaction of various aryl bromides and heteroaryl bromides with phenylboronic acid in a mini-continuous flow reactor system at elevated temperatures in a phosphine-free system. The reaction was also performed in batch using a number of different solvent systems in order to optimise conditions. The catalytic mini-reactor can be used repeatedly over several cycles in the Suzuki-Miyaura cross-coupling reaction. While the diameter of the flow channel is 3 mm, the macroporous resin supported catalyst is solvent expanded to completely fill the channel. Consequently, the liquid path is through the micro channels of the macroporous resin structure. Intensification of the process over the stirred batch reaction is through increased reagent-catalyst contact and results in a 20-fold increase in the rate of reaction. The residence/space time on the reactor is 10.5 min, compared to 24 h in batch, which means that a diversity of starting materials can be screened over a short period of time. To demonstrate the utility of the system, a diversity of aryl and heteroaryl bromides have been studied.  相似文献   

2.
Fine BaTiO3 nanoparticles were prepared by hydrothermal synthesis under supercritical condition (400 °C and 30 MPa) from mixture of barium hydroxide and titanium dioxide as starting precursors. First, conditions for synthesizing BaTiO3 were examined by using batch reactors. High pH condition, pH > 13, is necessary to obtain phase pure BaTiO3. The reason was discussed based on the solubility of titanium dioxide, which that dissolution–recrystallization process is essential for the synthesis of BaTiO3 nanoparticles. Rapid heating of the starting precursors by mixing with high temperature water in a flow reactor is effective to synthesize smaller size and narrower particle size distribution for the BaTiO3 nanoparticles, compared with the case of slow heating with a batch reactor.  相似文献   

3.
A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1 L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mL min−1, respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40 °C and 20 °C, respectively, at the 1 L scale. Reactions in the 1 L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to generate concentration profiles for all the components in the reaction. Also, it was possible to detect the presence of a simulated impurity of ethanol (at levels of 2.6 and 9.1% mol/mol) in butan-1-ol, and the resulting production of ethyl acetate, by DLSMS, but not by in-line MIR spectrometry.  相似文献   

4.
Kawamura K  Ikoma K  Igarashi S  Hisamoto H  Yao T 《Talanta》2011,84(5):1318-1322
A new type of flow injection analysis (FIA) system combined with an extremely high temperature reactor, namely hydrothermal flow injection analysis (HT-FIA), has been successfully constructed for the first time. Fundamental characteristics of HT-FIA system, such as limit temperature, pressure, and flow rate, were examined as an analytical tool. To demonstrate the potential of HT-FIA, the catalytic activity of Ir(IV) for the degradation of a water-soluble porphyrin, 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid (TPPS), was applied for the determination of trace amounts of Ir(IV). Although the indicator reaction is very slow at room temperature, HT-FIA system enables to accelerate the reaction. A linear calibration curve was acquired at 10−8 M level of Ir(IV) and the interferences of platinum group metal ions were examined. The detection limit of Ir(IV) was 5.8 × 10−9 M and a fairly high-throughput analysis, of which more than 30 samples can be analyzed within 80 min, was achieved.  相似文献   

5.
The recycling of cross-linked polyethylene (XLPE) by a decross-linking reaction in supercritical methanol was studied using a batch reactor. XLPEs with initial gel contents of 45, 55 and 65% were employed and subjected to reaction temperatures between 320 and 360 °C. Complete decross-linking of XLPE was achieved in 10 min in supercritical methanol at 360 °C and 15 MPa. For the first time, chemical kinetics for the decross-linking reaction is proposed based on the gel concentration, and applicable to the reactor design. With respect to the gel concentration, the first-order reaction model agreed well with the experimental results. The evaluated kinetic constant was 0.0867 ± 0.0082 cm3/mg min at 350 °C, and the activation energy was 578 ± 25 kJ/mol.  相似文献   

6.
Water treatment has become a source of concern as new pollutants and higher volumes of waste water must be treated. Emerging biological approaches, namely the use of bioreactors, for cleaning processes have been introduced. The use of bioreactors requires the development of efficient monitoring tools, preferably with real-time measurements. In this work, a couple of flow injection systems were developed and optimized for the potentiometric determination of fluoride to monitor a rotating biological contactor (RBC) bioreactor and a sequencing batch reactor (SBR) with off-line and on-line sampling. Both the RBC and the SBR bioreactors were set up for the biodegradation of the halogenated organic compound 2-fluorophenol and, as fluoride was a degradation byproduct, the process was monitored by following up its concentration.The described flow injection potentiometric methods enabled the fluoride determination within the required quantification range 0.10-100 mM. The possible interferences from the growth medium were minimized in-line. The determination rate was 78 h−1 for the off-line monitoring of RBC and 50−1 h for the on-line monitoring of the SBR, with a sample consumption of 0.500 mL and 0.133 mL per determination, respectively. Furthermore, the overall reagent consumption was quite low. The accuracy of the system was evaluated by comparison with a batch procedure. The SBR efficiency was monitored both on-line by the flow system and off-line by HPLC, for comparison purposes.  相似文献   

7.
Continuous ATRP of MMA was carried out in a flow tubular reactor with varying flow rate, temperature, and [monomer]/[initiator] ratios. Changing the flow rate directly relates to the reaction time. This process produces polymer continuously with the conversion increasing with decreasing flow rate. The molecular weight (relating to the flow rate) increases linearly with conversion which is also observed when the [monomer]/[initiator] ratio was changed. The effect of altering the reaction temperature was studied and the apparent activation energy of the propagation reaction of MMA in this system was calculated to be ∼56.9 kJ mol−1, close to the values reported previously. Preparation of diblock copolymers is also reported with varying comonomers and the conversion, and SEC results suggested that this continuous system is an excellent and facile way to have a continuous ATRP process.  相似文献   

8.
Liquefaction of tar from oil distillation was studied under sub- and supercritical water conditions using a batch reactor at 623 and 673 K and 25-40 MPa. The reaction scheme for tar liquefaction was determined as follows: the liquefaction process of tar occurs first and then intermediate chemical compounds are transformed into lighter molecular weight species. The effects of pressure and treatment time were combined into a single severity parameter that was used to monitor the conversion of tar. The main products from the liquefaction of tar were phenol (3.44 wt%), biphenyl (2.23 wt%), diphenylether (13.70 wt%) and diphenylmethane (1.30 wt%), respectively. Liquefaction of tar clearly increased with increasing water density at the same temperature reaction. It indicates that hydrolysis was important in the cleavage of the macromolecular structure of tar under sub- and supercritical conditions. Based on the results, this method could become an efficient method for tar liquefaction, producing high yields of valuable chemical intermediates.  相似文献   

9.
A green and highly sensitive analytical procedure was developed for the determination of free chlorine in natural waters, based on the reaction with N,N-diethyl-p-phenylenediamine (DPD). The flow system was designed with solenoid micro-pumps in order to improve mixing conditions by pulsed flows and to minimize reagent consumption as well as waste generation. A 100-cm optical path flow cell based on a liquid core waveguide was employed to increase sensitivity. A linear response was observed within the range 10.0 to 100.0 µg L− 1, with the detection limit, coefficient of variation and sampling rate estimated as 6.8 µg L− 1 (99.7% confidence level), 0.9% (n = 20) and 60 determinations per hour, respectively. The consumption of the most toxic reagent (DPD) was reduced 20,000-fold and 30-fold in comparison to the batch method and flow injection with continuous reagent addition, respectively. The results for natural and tap water samples agreed with those obtained by the reference batch spectrophotometric procedure at the 95% confidence level.  相似文献   

10.
Ben Wahab  Stephen Passey 《Tetrahedron》2010,66(21):3861-18537
Continuous flow micro fluidic devices for organic synthesis (‘micro reactors’) are becoming established in a number of facets of modern applied chemistry. As part of a concurrent research project with a pharmaceutical company for generation of materials of pharmaceutical interest within continuous flow environments, we present here, for the first time a series of indoles that have been produced within micro reactor systems. We have developed three different approaches to the synthesis, which are compared with traditional batch synthesis as well as each other in terms of ease of optimization, chemical suitability and versatility, and implications as to throughput. Typical throughputs of approach 1 (simulated classical synthesis) were in the region of 2 mgh−1 of indoles such as tetrahydrocarbazole and cyclopentaindole. The second approach (based on Elk's modification of Fischer indole synthesis) gave throughputs of 5.7-8.9 mgh−1 and the final approach (using heterocatalytic flow reactors) gave the highest throughputs of 12.7-20.1 mgh−1. All throughputs are per single channel reactor system (i.e., one single reactor set up), and the latter two approaches produce viable output quantities for the syntheses of radiolabelled materials (where typically minute amounts of high purity materials are required from a rapid and safe production environment).  相似文献   

11.
New and improved routes to trifluoromethyl fluoroformate were developed. Sterically hindered halogenated olefins initiated the reaction of CF3OF and CO under mild conditions, giving yields of up to 80%. The thermal reaction of CF3OF and CO in a flow system was highly dependent on temperature and the type of tubular reactor material. A PTFE reactor gave moderate conversion and high selectivity for the formate at 120 °C.  相似文献   

12.
In this experimental work, a dense tubular Pd–Ag membrane reactor is used for carrying out the methanol steam reforming reaction for producing a CO-free hydrogen stream. A non-commercial Cu/Zn/Mg-based catalyst is used in the lumen side of the membrane reactor and the experimental tests are performed at a reaction temperature of 300 °C and H2O/CH3OH feed molar ratio of 3/1. In both co-current and counter-current flow configurations, the effect of the weight hourly space velocity (WHSV) as well as the reaction pressure on the membrane reactor performances in terms of CO-free hydrogen recovery, hydrogen yield and hydrogen selectivity are proposed and discussed.  相似文献   

13.
In this study, a continuous linear alcohol derivatization is developed. Reaction of alcohol group (ROH) with benzoyl chloride (BC) is carried out in an on-line system with UV detection. All reaction conditions, as flow rate (FR), ROH/BC molar ratio, wavelength, temperature, microwave (MW) irradiation and reaction coil size (internal diameter and length) were optimized. 0.5 mL min−1, 2.49 [BC]/[ROH], 230 nm, 60 °C or medium power (225 W) when MW irradiation was used and a reactor coil of 159 μL (0.5 mm × 810 mm) were the optimum conditions. The on-line system with microwave irradiation was more efficient than the one with a water bath heating. The developed system reduces analysis time consumption, reagent amounts and this system was used to evaluate the composition of commercial samples of alcohols polyethoxylated (surfactants).  相似文献   

14.
A prototype DRIFTS flow reaction chamber was designed and developed in order to find analytical application in the study of heterogeneous catalysts operating at high temperatures under fast transient gas feed conditions. Minimisation of dead-volumes allows gas replacement in 8-10 s at 10 mL min−1 total flow. To overcome problems related to the reactivity of the cell walls under alternating oxidizing/reducing gases, the cell was built with Inconel 600™, which was tested to be very inert even at high temperatures. The sample holder, which was developed to closely resemble a micro plug-flow reactor, poses some problems in terms of heat transfer to the outer body of the cell (limiting then the maximum reachable temperature) and of the correct measurement of the actual sample temperature. These problems were solved with a careful re-design of the upper part of the cell. The second prototype thus derived is able to reach temperatures up to 803 K and allows gas replacement in less than 4 s at 10 mL min−1. The cell is inserted in a MCT-FT-IR, which allows to collect high quality spectra with a 1 s time-resolution. The downstream flow can be analysed by a quadrupole mass spectrometer equipped with an enclosed source and by a commercial GC. The performances of this prototype cell are presented showing some tests carried out with ceria-zirconia (CexZr1−xO2) catalysts for CO abatement under real operando conditions.  相似文献   

15.
A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N′-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02–0.80 mmol L−1 with detection limit of 0.01 mmol L−1. The content of glucose in the sample of honey was determined as 35.5 ± 1.0 mass % (number of the repeated measurements n = 7; standard deviation SD = 1.2%; relative standard deviation RSD = 3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days).  相似文献   

16.
Polypropylene (PP) was pyrolysed over spent FCC commercial catalyst (FCC-s1) using a laboratory fluidised-bed reactor operating isothermally at ambient pressure. The influence of reaction conditions including catalyst, temperature, and ratio of polymer to catalyst feed and flow rates of fluidising gas was examined. The yield of gaseous and liquid hydrocarbon products at 390 °C for spent FCC commercial catalyst (87.8 wt%) gave much higher yield than silicate (only 17.1 wt%). Greater product selectivity was observed with FCC-s1 as a post-use catalyst with about 61 wt% olefins products in the C3-C7 range. The selectivity could be further influenced by changes in reaction conditions. Valuable hydrocarbons of olefins and iso-olefins were produced by low temperatures and short contact times used in this study. It is also demonstrated that a post-use catalyst system under appropriate conditions the resource potential of polymer waste can be economically recovered and also can address the recycling desire to see an alternative to solve a major environment problem.  相似文献   

17.
In this paper, ascorbic acid as a new carbon dioxide (CO2) absorbent was investigated. The equilibrium solubility of CO2 into 0.5, 1 and 1.5 mol dm−3 (M) aqueous ascorbic acid solutions were measured experimentally with a stirred batch reactor at total atmospheric pressure over the CO2 partial pressure ranging from 0 to 45 kPa and temperatures between 298 and 313 K. The results of the gas solubility are presented as loading capacity (mol CO2/mol ascorbic acid) as function of partial pressure of CO2 for all experimental runs. Experimental results showed that solubility of CO2 increases with increase in molar concentration of ascorbic acid solution at a given temperature and decreases with increase in temperature at a given concentration. The densities and viscosities of the ascorbic acid solutions were measured at the same conditions of the solubility measurement. Some corrosion rate tests were also performed on carbon steel at temperature of 308 K. It was observed that viscosity and corrosion rate increase when the molar concentration of ascorbic acid solution increases.  相似文献   

18.
The preparation of the biodegradable aliphatic polyester poly(propylene succinate) (PPSu) using 1,3-propanediol and succinic acid is presented. Its synthesis was performed by two-stage melt polycondensation in a glass batch reactor. The polyester was characterized by gel permeation chromatography, 1H NMR spectroscopy and differential scanning calorimetry (DSC). It has a number average molecular weight 6880 g/mol, peak temperature of melting at 44 °C for heating rate 20 °C/min and glass transition temperature at −36 °C. After melt quenching it can be made completely amorphous due to its low crystallization rate. According to thermogravimetric measurements, PPSu shows a very high thermal stability as its major decomposition rate is at 404 °C (heating rate 10 °C/min). This is very high compared with aliphatic polyesters and can be compared to the decomposition temperature of aromatic polyesters. TG and Differential TG (DTG) thermograms revealed that PPSu degradation takes place in two stages, the first being at low temperatures that corresponds to a very small mass loss of about 7%, the second at elevated temperatures being the main degradation stage. Both stages are attributed to different decomposition mechanisms as is verified from activation energy determined with isoconversional methods of Ozawa, Flyn, Wall and Friedman. The first mechanism that takes place at low temperatures is auto-catalysis with activation energy E = 157 kJ/mol while the second mechanism is a first-order reaction with E = 221 kJ/mol, as calculated by the fitting of experimental measurements.  相似文献   

19.
A new carbon paste electrode modified with tetramethyl thiuram disulfide is prepared to use as copper potentiometric sensor in batch and flow analysis. The influence of pH and carbon paste composition on the potentiometric response is studied. The principal parameters of the flow system are optimized and the detection limits and the selectivity coefficients of the potentiometric sensor are calculated for static and flow mode. In both cases, the sensor shows high selectivity to copper ions but in flow analysis this selectivity is higher. The obtained detection limits are 4.6 × 10−8 M for batch measurements and 2.0 × 10−7 M for on-line analysis. The potentiometric sensor is applied to copper(II) determination in real samples in static and flow measurements. In both analysis modes, successful results are obtained.  相似文献   

20.
This paper discusses the first setup for on-line qualitative and quantitative comprehensive two-dimensional gas chromatography (GC × GC) of complex hydrocarbon mixtures. A built-in 4-port 2-way valve allows switching between flame ionization detection (FID) and time-of-flight mass spectrometry (TOF-MS) between runs, without the need to cool down and vent the MS. Proper selection of GC carrier gas flow rates enables maximal agreement between the obtained chromatograms in both configurations. For on-line analysis of reactor effluents, a dedicated sampling system allows automatic sampling of the hot reactor effluent gases and immediate injection of the sample on the GC × GC. To determine a complete effluent composition in a single run of the GC × GC, a subzero oven starting temperature was employed. Modulation is started when the oven temperature reaches 40 °C, thus dividing the chromatogram in a conventional 1D and a comprehensive 2D part. This work illustrates the mature and robust character of GC × GC, extending its capabilities from mere laboratory use to on-line routine analysis for industrial processes in the (petro-)chemical industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号