首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ensafi AA  Khaloo SS 《Talanta》2005,65(3):781-788
A reliable and very sensitive procedure for the determination of ultra trace of molybdenum is proposed. Molybdenum was determined by cathodic stripping differential pulse voltammetry based on the adsorption collection of the Mo(VI)-Tiron complex on a hanging mercury drop electrode (HMDE). The variation of peak current with pH, concentration of Tiron and chlorate, plus several instrumental parameters such as accumulation time, accumulation potential and scan rate, were optimized. Under optimized condition, the relationship between the peak current and molybdenum concentration is linear in the range of 0.010-21.0 ng ml−1. The limit of detection was found to be 0.006 ng ml−1. The relative standard deviation for 10 replicates determination of 0.6 and 10 ng ml−1 Mo(VI) is equal to 1.3 and 0.9%, respectively. The method was applied to the determination of molybdenum in river water, tap water, well water, plant foodstuff samples such as cucumber, tomato, carrot, and certified steel reference materials.  相似文献   

2.
A new method is proposed for the determination of bismuth and copper in the presence of each other based on adsorptive stripping voltammetry of complexes of Bi(III)-chromazorul-S and Cu(II)-chromazorul-S at a hanging mercury drop electrode (HMDE). Copper is an interfering element for the determination of Bi(III) because, the voltammograms of Bi(III) and Cu(II) overlapped with each other. Continuous wavelet transform (CWT) was applied to separate the voltammograms. In this regards, wavelet filter, resolution of the peaks and the fitness were optimized to obtain minimum detection limit for the elements. Through continuous wavelet transform Symlet4 (Sym4) wavelet filter at dilation 6, quantitative and qualitative analysis the mixture solutions of bismuth and copper was performed. It was also realized that copper imposes a matrix effect on the determination of Bi(III) and the standard addition method was able to cope with this effect. Bismuth does not have matrix effect on copper determination, therefore, the calibration curve using wavelet coefficients of CWT was used for determination of Cu(II) in the presence of Bi(III). The detection limits were 0.10 and 0.05 ng ml−1 for bismuth and copper, respectively. The linear dynamic range of 0.1-30.0 and 0.1-32.0 ng ml−1 were obtained for determination of bismuth in the presence of 24.0 ng ml−1 of copper and copper in the presence of 24.0 ng ml−1 of bismuth, respectively. The method was used for determination of these two cations in water and human hair samples. The results indicate the ability of method for the determination of these two elements in real samples.  相似文献   

3.
Zarei K  Atabati M  Ilkhani H 《Talanta》2006,69(4):816-821
A highly sensitive procedure is presented for the determination of ultra-trace concentration of molybdenum by catalytic adsorptive stripping voltammetry. The method is based on adsorptive accumulation of the molybdenum (Mo)-pyrocatechol violet (PCV) complex on to a hanging mercury drop electrode, followed by reduction of the adsorbed species by voltammetric scan using differential pulse modulation. The reduction current is enhanced catalytically by chlorate. The influence of variables was completely studied by factorial design analysis. Optimum analytical conditions for the determination of molybdenum were established. Molybdenum can be determined in the range 1.0 × 10−3-100.0 ng ml−1 with a limit of detection of 0.2 pg ml−1. The influence of potential interfering ions on the determination of molybdenum was studied. The procedure was applied to the determination of molybdenum in mineral water and some analytical grade substances with satisfactory results.  相似文献   

4.
Highly sensitive catalytic determination of molybdenum   总被引:1,自引:0,他引:1  
A novel, highly sensitive, selective, and simple kinetic method was developed for the determination of Mo(VI) based on its catalytic effect on the oxidation of 1-amino-2-naphthol-4-sulfonic acid (ANSA) with H2O2. The reaction was followed spectrophotometrically by tracing the oxidized product at 465 nm after 30 min of mixing the reagents. The optimum reaction conditions were: 10 mmol l−1 ANSA, 50 mmol l−1 H2O2, 100 mmol l−1 acetate buffer of pH 5.0 ± 0.05 and at 40 °C. Addition of 200 μg ml−1 diethylenetriaminepentaacetic acid (DTPA) conferred high selectivity for the proposed method. Following the recommended procedure, Mo(VI) could be determined with a linear calibration graph up to 2.5 ng ml−1 and a detection limit, based on the 3Sb-criterion, of 0.027 ng ml−1. The unique sensitivity and selectivity of the implemented method allowed its direct application to the determination of Mo(VI) in natural and industrial waste water. The method was validated by comparison with the standard ETAAS method. Moreover, published catalytic-spectrophotometric methods for the determination of molybdenum were reviewed.  相似文献   

5.
Grabarczyk M  Koper A 《Talanta》2011,84(2):393-399
A differential pulse adsorptive stripping voltammetric method has been developed for molybdenum trace determination in environmental water samples containing organic compounds. It was proved that interferences from the organic matrix such as surface active substances and humic substances could be removed by the addition of resin to the analysed sample prior to voltammetric measurement. The parameters for Mo(VI) determination in the presence of resin, using a hanging mercury drop as the working electrode, were examined systematically for two complexing agents: cupferron and chloranilic acid. The detection limits estimated from 3 times the standard deviation for a low Mo(VI) concentrations were equal to 5 × 10−11 and 3 × 10−10 mol L−1 for cupferron and chloranilic acid, respectively. At the optimized conditions the quantitative Mo(VI) determination in the presence of even 50 mg L−1 of surface active compounds can be performed. The proposed procedures were validated in the course of Mo(VI) determination in certified reference material NASS-5 and in the course of studying recovery of Mo(VI) from spiked river water samples.  相似文献   

6.
An aluminum hydroxide coprecipitation method for the determination of cadmium, copper and lead by flame atomic absorption spectrometry in aqueous solutions, seawater and mineral water samples has been investigated. The coprecipitation conditions, such as the effect of the pH, the amount of carrier element, the effect of possible matrix ions and the time were examined in detail for the studied elements. It was found that cadmium, copper and lead are co-precipitated quantitatively (≥95%) with aluminum hydroxide at pH 7 with low R.S.D. values of around 2 to 3%. Detection limits (38) were 6 ng ml−1 for Cd, 3 ng ml−1 for Cu and 16 ng ml−1 for Pb. The method proposed was validated by the analysis of HPS 312205 seawater standard reference material and spiked mineral water samples.  相似文献   

7.
Agrawal YK  Sharma KR 《Talanta》2005,67(1):112-120
A new functionalized calix[6]crown hydroxamic acid is reported for the speciation, liquid-liquid extraction, sequential separation and trace determination of Cr(III), Mo(VI) and W(VI). Chromium(III), molybdenum(VI) and tungsten(VI) are extracted at pH 4.5, 1.5 M HCl and 6.0 M HCl, respectively with calixcrown hydroxamic acid (37,38,39,40,41,42-hexahydroxy7,25,31-calix[6]crown hydroxamic acid) in chloroform in presence of large number of cations and anions. The extraction mechanism is investigated. The various extraction parameters, appropriate pH/M HCl, choice of solvent, effect of the reagent concentration, temperature and distribution constant have been studied. The speciation, preconcentration and kinetic of transport has been investigated. The maximum transport is observed 35, 45 and 30 min for chromium(III), molybdenum(VI) and tungsten(IV), respectively. For trace determination the extracts were directly inserted into the plasma for inductively coupled plasma atomic emission spectrometry, ICP-AES, measurements of chromium, molybdenum and tungsten which increase the sensitivity by 30-fold, with detection limits of 3 ng ml−1. The method is applied for the determination of chromium, molybdenum and tungsten in high purity grade ores, biological and environmental samples. The chromium was recovered from the effluent of electroplating industries.  相似文献   

8.
A novel flow-injection spectrophotometry has been developed for the determination of molybdenum(VI) at nanograms per milliliter levels. The method is based on the catalytic effect of molybdenum(VI) on the bromate oxidative coupling of p-hydrazinobenzenesulfonic acid with N-(1-naphthyl)ethylenediamine to form an azo dye (λmax = 530 nm). Chromotropic acid (4,5-dihydroxy-2,7-naphthalenedisulfonic acid) acted as an effective activator for the molybdenum(VI)-catalyzed reaction and increased the sensitivity of the method. The reaction was monitored by measuring the change in absorbance of the dye produced. The proposed method allowed the determination of molybdenum(VI) in the range 1.0-20 ng mL−1 with sample throughput of 15 h−1. The limit of detection was 0.5 ng mL−1 and a relative standard deviation for 10 ng mL−1 molybdenum(VI) (n = 10) was 2.5%. The interfering ions were eliminated by using the combination of a masking agent and on-line minicolumn packed with cation exchanger. The present method was successfully applied to the determination of molybdenum(VI) in plant foodstuffs.  相似文献   

9.
A novel sensitive and simple method for rapid extraction, preconcentration and determination of cobalt, nickel and copper as their 1-(2-pyridilazo)-2-naphthol (PAN) complexes using polytetrafluoroethylene filter as solid phase and multivariate calibration of spectrophotometric data is presented. The analytical wavelengths of 400-700 nm were chosen and the experimental calibration matrix for partial least squares (PLS) was designed with 21 samples of 5.90-41.25, 0.30-29.35 and 0.64-41.30 ng ml−1 for cobalt, nickel and copper, respectively. The cross-validation method was used for selecting the number of components. The root-mean-square errors of predictions (RMSEPs) were between 0.48 and 1.37 ng ml−1. In this work we could reach preconcentration factors of 100 or even higher by using polytetrafluoroethylene as solid phase which is cheap and can be used in a wide range of pH, flow rates and for many times. The proposed method was successfully applied to the simultaneous determination of Co, Ni and Cu in tap and pit water samples.  相似文献   

10.
A new method is presented for the determination of bismuth and copper based on cathodic adsorptive stripping of complexes of Cu(II) and Bi(III) with 2′,3,4′,5,7-pentahydroxyflavone (morin) at a hanging mercury drop electrode (HMDE). The effect of various parameters such as pH, concentration of morin, accumulation potential and accumulation time on the selectivity and sensitivity were studied. The optimum conditions for determination of copper include nitric acid concentration 0.1 M, morin concentration 0.6 μM and accumulation potential of −300 mV. Those conditions for the determination of bismuth include 0.15 M acid concentration, 0.6 μM morin and accumulation potential of −300 mV. Under these optimum conditions and for an accumulation time of 60 s, the measured peak current at −20 to 25 mV is proportional to the concentration of copper and bismuth over the range of 0.2-130 and 5-50 ng ml−1, respectively. At high concentration of morin (35 μM morin) and accumulation potential of −300 mV (versus Ag/AgCl reference electrode) the peak current is proportional only to the concentration of copper and bismuth has no contribution to the current. At low concentration of morin (0.5 μM morin) and accumulation potential of 100 mV (versus Ag/AgCl reference electrode) the peak current is proportional only to the concentration of bismuth. The method was applied to the determination of copper and bismuth in some real and synthetic samples with satisfactory results.  相似文献   

11.
A sensitive and selective method for the simultaneous determination of copper, zinc and lead is presented. The method is based on the adsorptive accumulation of 2′,3,4′,5,7-pentahydroxyflavone (Morin) complexes of these elements onto a hanging mercury drop electrode, followed by reduction of adsorbed species by voltammetric scan using differential pulse modulation. Optimal analytical conditions were found to be Morin concentration of 2.0 μM, pH of 4.0, and an adsorption potential at −500 mV versus Ag/AgCl. With an accumulation time of 60 s, the peak currents are proportional to the concentration of copper, lead and zinc over the 1 to 60, 0.3-80 and 1-70 ng ml−1 range with detection limits of 0.06, 0.08 and 0.06 ng ml−1, respectively. The procedure was applied to the simultaneous determination of copper, lead and zinc in some real and synthetic artificial real samples with satisfactory results.  相似文献   

12.
A sensitive and selective flow injection chemiluminescence (CL) method combined with controlled potential electrolysis technique was described for the determination of molybdenum. The method is based on the chemiluminescence reaction of luminol with unstable molybdenum(III) in alkaline solution. The molybdenum(III) was on-line reduced from molybdenum(VI) via controlled potential electrolysis technique using a homemade flow-through carbon electrolytic cell at the potential of −0.6 V (versus Ag/AgCl). The method allows the determination of molybdenum in the 5.0×10−10 to 5.0×10−7 g ml−1 range with a limit of detection (3σ) of 5×10−11 g ml−1 molybdenum. The relative standard deviation is 2.6% for the 1.0×10−9 g ml−1 molybdenum solution in 11 repeated measurements. This method was successfully applied to the determination of molybdenum in water samples.  相似文献   

13.
In this work, two kinds of chelating resin, bis(2-aminoethylthio)methylated resin (BAETM) and γ-aminobutyrohydroxamate resin (γ-ABHX) were synthesized. Of these, the former has a hydrophobic skeleton, and the latter a hydrophilic skeleton. The functionalities of each were 0.91 and 2.21 mmol g−1, respectively. The chelating behavior of these resins towards vanadium, molybdenum and tungsten as a function of pH was studied. To perform trace metals analysis in complex matrices, a hyphenated method-chelation ion chromatography (CIC) coupled on-line detection with inductively coupled plasma mass spectrometry (ICP-MS) was developed. With a BAETM resin column (5×0.4 cm i.d.) as the separator, a sample volume of 20 μl, nitric acid (pH 1.5) as the eluent and a flow rate of 1 ml min−1, the detection limits for the determination of vanadium, molybdenum and tungsten were lower than 0.05 ng ml−1and the linear ranges were up to 100 ng ml−1 for each element. By increasing the injected sample volume to 250 μl, the resin concentrator improved the detection limit to 0.01 ng ml−1. For the determination of these elements (5 ng ml−1 for each) spiked in artificial sea water samples, γ-ABHX resin column (3×0.6 cm i.d.) demonstrated well resolved peak separation between the analytes and the matrix elements—calcium and magnesium, by using sodium nitrate (10 ml, 10−4 M) as the eliminator.  相似文献   

14.
This paper describes a highly sensitive, selective catalytic-kinetic-spectrophotometric method for the determination of copper(II) concentration as low as 6 ng ml−1. The method is based on the catalytic effect of copper(II) on the oxidation of citric acid by alkaline hexacyanoferrate(III). The reaction was followed by measuring the decrease in absorbance of hexacyanoferrate(III) at 420 nm (λmax of [Fe(CN)6]3−,  = 1020 dm3 mol−1 cm−1). The dependence of rate of the indicator reaction on the reaction variables has been studied and discussed to propose a suitable mechanism to get a relation between the reaction rate and [Cu2+]. A fixed time procedure has been used to obtain a linear calibration curve between the initial rate and lower [Cu2+] or log[Cu2+] in the range 1 × 10−7 to 4 × 10−4 mol l−1 (6.35-25,400 ng ml−1). The detection limit has been calculated to be 4 ng ml−1. The maximum average error is 3.5%. The effect of the presence of various cations, commonly associated with copper(II) and some anions has also been investigated and discussed. The proposed method is sensitive, accurate, rapid and inexpensive compared to other techniques available for determination of copper(II) in such a large range of concentration. The new method has been successfully applied for the determination of copper(II) in various samples.  相似文献   

15.
A simple and sensitive kinetic method for the determination of traces of mercury (70-760 ng ml−1) based on its inhibitory effect on the addition reaction between methyl green and sulfite ion is proposed. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of methyl green at 596 nm between 2 and 4 min using a fixed time method. Artificial neural networks with back propagation algorithm coupled with an orthogonal array design were applied to the modeling of the proposed kinetic system and optimization of experimental conditions. An orthogonal design was utilized to design the experimental protocol, in which pH, concentration of sulfite, temperature, and concentration of methyl green were varied simultaneously. Optimum experimental conditions in term of sensitivity were generated by using ANNs. The rate of decrease in absorbance is inversely proportional to the concentration of Hg(II) over entire concentration range tested (100-550 ng ml−1) with a detection limit of 45 ng ml−1 and a relative standard deviation at 200-400 ng ml−1 Hg(II) of 3.2% (n=5). A simple preconcentration step improved the limit of detection and linear dynamic range of the method to about 8 and 12-760 ng ml−1, respectively, by about 10 times enrichment of mercury between 12 and 75 ng ml−1. The method was based on enrichment of Hg(II) from dilute samples on an anionic ion exchanger fixed on a plastic strip and was applied to the determination of Hg(II) in environmental samples with satisfactory results.  相似文献   

16.
A highly sensitive determination of mercury in the presence of Cu(II) using a boron-doped diamond (BDD) thin film electrode coupled with sequential injection–anodic stripping voltammetry (SI–ASV) was proposed. The Cu(II) was simultaneously deposited with Hg(II) in a 0.5 M HCl supporting electrolyte by electrodeposition. In presence of an excess of Cu(II), the sensitivity for the determination of Hg(II) was remarkably enhanced. Cu(II) and Hg(II) were on-line deposited onto the BDD electrode surface at −1.0 V (vs. Ag/AgCl, 3 M KCl) for 150 s with a flow rate of 14 μL s−1. An anodic stripping voltammogram was recorded from −0.4 V to 0.25 V using a frequency of 60 Hz, an amplitude of 50 mV, and a step potential of 10 mV at a stopped flow. Under the optimal conditions, well-defined peaks of Cu(II) and Hg(II) were found at −0.25 V and +0.05 V (vs. Ag/AgCl, 3 M KCl), respectively. The detection of Hg(II) showed two linear dynamic ranges (0.1–30.0 ng mL−1 and 5.0–60.0 ng mL−1). The limit of detection (S/N = 3) obtained from the experiment was found to be 0.04 ng mL−1. The precision values for 10 replicate determinations were 1.1, 2.1 and 2.9% RSD for 0.5, 10 and 20 ng mL−1, respectively. The proposed method has been successfully applied for the determination of Hg(II) in seawater, salmon, squid, cockle and seaweed samples. A comparison between the proposed method and an inductively coupled plasma optical emission spectrometry (ICP-OES) standard method was performed on the samples, and the concentrations obtained via both methods were in agreement with the certified values of Hg(II), according to the paired t-test at a 95% confidence level.  相似文献   

17.
It is the first time that triphenylmethane was used as an adsorbent to preconcentrate and separate trace amount of molybdenum in water samples. The effects of different parameters, such as acidity, stirring time and various metal ions, the amounts of triphenylmethane and salicyl fluorine, etc. on the enrichment yield of molybdenum have been studied to optimize the experimental conditions. Under the optimum conditions, molybdenum can be adsorbed on the surface of microcrystalline triphenylmethane loaded with salicyl fluorone by the intermolecular action strength. The possible reaction mechanism for the enrichment of molybdenum was discussed in detail in this paper. Mo(VI) can be completely separated from Pb(II), Co(II), Cu(II), Cr(III), Ni(II), Hg(II), Zn(II), Cd(II), Fe(III) and Al(III) in the solution. The proposed method was successfully applied to the determination of trace amount of molybdenum in various water samples by spectrophotometry after preconcentration using microcrystalline triphenylmethane. The preconcentration factor is from 83 (500 ml water sample was enriched to 6.0 ml) to 166 (1000 ml water sample was enriched to 6.0 ml). The detection limit is 1.3 × 10−5 mg l−1 and the linearity is maintained in the concentration range 3.8 × 10−3 to 0.36 mg l−1 with a correlation coefficient of 0.9998. The recoveries are in the range of 93.5-104%. The relative standard deviation is 1.8-2.9%. Analytical results obtained with this novel method are very satisfactory.  相似文献   

18.
Varinder Kaur 《Talanta》2007,73(3):425-430
A new approach for the analysis of Co(II), Ni(II) and Pd(II) as morpholine-4-carbodithioate (MDTC) complexes in aqueous medium by using solid phase microextraction (SPME)-high performance liquid chromatography (HPLC)-UV has been developed. The method involves sorption of metal complexes on PDMS fiber from aqueous solution followed by desorption in the desorption chamber of SPME-HPLC interface using acetonitrile:water (60:40) as mobile phase. A good separation of metal complexes is achieved on C18 column. The detection limits of Co(II), Ni(II) and Pd(II) are 0.17, 0.11 and 0.06 ng ml−1, respectively. These can be determined by the proposed method without interference from other common metal ions such as Mo(VI), V(V), Ag(I), Sn(IV), Cd(II), Pb(II), Zn(II), Ag(I), Sn(II), Cr(III) and Cr(VI). The method was applied to the determination of these metals in different alloy samples and drinking water sample.  相似文献   

19.
Di J  Yang T 《Talanta》2003,61(2):165-171
A new high sensitive spectrophotometric determination of trace molybdenum was investigated. The sensitivity of the determination of molybdenum, which based on the color charge transfer complex of molybdotungstophosphate-3,3′,5,5′-tetramethylbenzidine, was greatly enhanced by copper(II) ions in the presence of polyvinyl alcohol. The improved method maintained the features of simplicity, rapidity and selectivity, especially eliminating the interference from tungsten. Under the optimum conditions, Beer's law was obeyed over the range from 2 to 32 ng ml−1 molybdenum with molar absorptivity being 4.92×105 l mol−1 cm−1 at 660 nm. The relative standard deviation was 1.2% under nine determinations for 16 ng ml−1 Mo(VI). The present method had been applied to the determination of trace molybdenum in tungsten ores with satisfactory results.  相似文献   

20.
The determination of zinc ion (1-60 ng ml−1) by anodic square-wave stripping voltammetry on an anion-exchange perfluorinated polymer Tosflex mercury film electrodes (TMFE) was evaluated. The detection limit was 0.1 ng ml−1 Zn(II). The effect of various organic compounds (gelatin, albumin, starch, camphor, humic acid, Triton X-100, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB)) is explored. The results indicate that due to the size-exclusion and ion-exchange properties of Tosflex film, the TMFE is considerably more resistant to organic interference than the bare mercury film electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号