首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of tests have been performed to determine the saturated critical heat flux (CHF) in 0.5 and 0.8 mm internal diameter microchannel tubes as a function of refrigerant mass velocity, heated length, saturation temperature and inlet liquid subcooling. The tested refrigerants were R-134a and R-245fa and the heated length of microchannel was varied between 20 and 70 mm. The results show a strong dependence of CHF on mass velocity, heated length and microchannel diameter but no influence of liquid subcooling (2–15 °C) was observed. The experimental results have been compared to the well-known CHF single-channel correlation of Y. Katto and H. Ohno [An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes, Int. J. Heat and Mass Transfer 27 (9) (1984) 1641–1648] and the multichannel correlation of W. Qu and I. Mudawar [Measurement and correlation of critical heat flux in two-phase microchannel heat sinks, Int. J. Heat and Mass Transfer 47 (2004) 2045–2059]. The comparison shows that the correlation of Katto–Ohno predicts microchannel data with a mean absolute error of 32.8% with only 41.2% of the data falling within a ±15% error band. The correlation of Qu and Mudawar shows the same trends as the CHF data but significantly overpredicts them. Based on the present experimental data, a new microscale version of the Katto–Ohno correlation for the prediction of CHF during saturated boiling in microchannels has been proposed.  相似文献   

2.
Subcooled flow boiling heat transfer for refrigerant R-134a in vertical cylindrical tubes with 0.83, 1.22 and 1.70 mm internal diameter was experimentally investigated. The effects of the heat flux, q″ = 1–26 kW/m2, mass flux, G = 300–700 kg/m2 s, inlet subcooling, ΔTsub,i = 5–15 °C, system pressure, P = 7.70–10.17 bar, and channel diameter, D, on the subcooled boiling heat transfer were explored in detail. The results are presented in the form of boiling curves and heat transfer coefficients. The boiling curves evidenced the existence of hysteresis when increasing the heat flux until the onset of nucleate boiling, ONB. The wall superheat at ONB was found to be essentially higher than that predicted with correlations for larger tubes. An increase of the mass flux leads, for early subcooled boiling, to an increase in the heat transfer coefficient. However, for fully developed subcooled boiling, increases of the mass flux only result in a slight improvement of the heat transfer. Higher inlet subcooling, higher system pressure and smaller channel diameter lead to better boiling heat transfer. Experimental heat transfer coefficients are compared to predictions from classical correlations available in the literature. None of them predicts the experimental data for all tested conditions.  相似文献   

3.
The transient critical flow experiment was carried out in the high-pressure test loop. The break sections were the sharp-edged tubes with inner diameter of nearly 4 mm but with quite different lengths. The initial pressure was up to 22.0 MPa and the inlet subcooling covered the range of 0 to 60C. New critical flow data were provided and the effects of inlet liquid subcooling and tube lengths were described. The proposed empirical nonequilibrium correlation was used to calculate the critical mass flow rate for such small diameter tube. Received on 9 September 1998  相似文献   

4.
The flow patterns and heat transfer coefficients of R-22 and R-134a during evaporation in small diameter tubes were investigated experimentally. The evaporation flow patterns of R-22 and R-134a were observed in Pyrex sight glass tubes with 2 and 8 mm diameter tube, and heat transfer coefficients were measured in smooth and horizontal copper tubes with 1.77, 3.36 and 5.35 mm diameter tube, respectively. In the flow patterns during evaporation process, the annular flows in 2 mm glass tube occurred at a relatively lower vapor quality compared to 8 mm glass tube. The flow patterns in 2 mm glass tube did not agree with the Mandhane’s flow pattern maps. The evaporation heat transfer coefficients in the small diameter tubes (d i  < 6 mm) were observed to be strongly affected by tube diameters, and to differ from those in the large diameter tubes. The heat transfer coefficients of 1.77 mm tube were higher than those of 3.36 mm and 5.35 mm tube. Most of the existing correlations failed to predict the evaporation heat transfer coefficient in small diameter tubes. Therefore, based on the experimental data, the new correlation is proposed to predict the evaporation heat transfer coefficients of R-22 and R-134a in small diameter tubes.  相似文献   

5.
This article reports an experimental investigation on flow boiling heat transfer and pressure drop of refrigerant R-134a in a smooth horizontal and two microfinned tubes from different manufacturers with the same geometric characteristics. Experiments have been carried out in an experimental facility developed for change of phase studies with a test section made with 9.52 mm external diameter, 1.5 m long copper tubes, electrically heated by tape resistors wrapped on the external surface. Tests have been performed under the following conditions: inlet saturation temperature of 5 °C, vapor qualities from 5% to 90%, mass velocity from 100 to 500 kg/s m2, and a heat flux of 5 kW/m2. Experimental results indicated that the heat transfer performance was basically the same for both microfin tubes. The pressure drop is higher in the microfinned tubes in comparison to the smooth tube over the whole range of mass velocities and vapor qualities. The enhancement factor, used to evaluate the combination of heat transfer and pressure drop, is higher than one for both tubes for mass velocities lower than 300 kg/s m2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient. Some images, illustrating the flow patterns, were obtained from the visualization section, located in the exit of the test section with the same internal diameter of the tested tube.  相似文献   

6.
The condensation heat transfer of pure refrigerants, R-22, R-134a and a binary refrigerant R-410A flowing in small diameter tubes was investigated experimentally. The condenser is a countflow heat exchanger which refrigerant flows in the inner tube and cooling water flows in the annulus. The heat exchanger is smooth, horizontal copper tube of 1.77, 3.36 and 5.35 mm inner diameter, respectively. The length of heat exchanger is 1220, 2660 and 3620 mm, respectively. The experiments were conducted at mass flux of 200–400 kg/m2 s and saturation temperature of 40°C. The main results were summarized as follows: in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski and Wu and Little correlation. The new single-phase correlation based on the experimental data was proposed in this study. In case of two-phase flow, the condensation heat transfer coefficient of R-410A for three tubes was slightly higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. The condensation heat transfer coefficient for R-22, R-134a and R-410A increased with increasing mass flux and decreasing tube diameter. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensation heat transfer. Therefore, the new condensation heat transfer correlation based on the experimental data was proposed in the present study.  相似文献   

7.
Measurements were conducted on Refrigerant-134a flowing through short tube orifices with length-to-diameter (L/D) ratios ranging from 5 to 20. Both two-phase and subcooled liquid flow conditions entering the short tube were examined for upstream pressures ranging from 896 to 1448 kPa and for qualities as high as 10% and subcoolings as high as 13.9°C. Data were analyzed as a function of the main operating variables and tube geometry. Semi-empirical models for both single- and two-phase flow at the inlet of the short tubes were developed to predict the mass flow of Refrigerant-134a through short tube orifices.

Choked flow conditions for Refrigerant-134a were typically established when downstream pressures were reduced below the saturation pressure corresponding to the inlet temperature. The flow rate strongly depended on the upstream pressure and upstream subcooling/quality. The mass flow also depended on cross-sectional area and short tube length. The mass flow model utilized a modified orifice equation that formulated the mass flow as a function of normalized operating variables and short tube geometry. For a two-phase flow entering the short tube, the modified orifice equation was corrected using a theoretically derived expression that related the liquid portion of the mass flow under two-phase conditions to a flow that would occur if the flow were a single-phase liquid. It was found that for sharp-edged short tubes with single- and two-phase flow, approximately 95% of the measured data and model's prediction were within ±15% of each other.  相似文献   


8.
A detailed experimental investigation is carried out to study the flow boiling heat transfer behavior of R-134a/R-290/R-600a (91%/4.068%/4.932% by mass) refrigerant mixture in smooth horizontal tubes of diameter 9.52 and 12.7 mm. The heat transfer coefficients of the mixture are experimentally measured under varied heat flux conditions for stratified flow patterns using a coaxial counter-current heat exchanger test section. The tests are conducted for refrigerant inlet temperatures between ?9 and 5 °C and mass flow rates ranging from 3 to 5 g s?1. Kattan–Thome–Favrat maps are used to confirm the flow patterns for the tested conditions. The magnitude of the heat transfer coefficient with respect to flow patterns and different mechanisms of boiling are discussed. The heat transfer coefficient of the refrigerant mixture is also compared with that of R-134a for selected working conditions. The significance of nucleate boiling in the overall heat transfer process under these testing conditions is highlighted.  相似文献   

9.
The condensation heat transfer coefficients of R-22, R-134a and R-410A in a single circular microtube were investigated experimentally. The experiments are conducted without oil in the refrigerant loop. The test section is a smooth, horizontal copper tube of 1.77 mm inner diameter. The experiments were conducted at mass flux of 450-1050 kg/m2 s, saturation temperature of 40 °C. The test results showed that in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski correlation. In case of two-phase flow, the condensation heat transfer coefficient of R-410A was higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensing heat transfer. And also, recently proposed correlation in the single circular microtube is considered not adequate for small diameter tube. Therefore, it is necessary to develop accurate and reliable correlation to predict heat transfer characteristics in the single circular microtube.  相似文献   

10.
An experimental study of convective boiling of refrigerants R-22, R-134a and R-404A in a 12.7 mm internal diameter, 2 m long, horizontal copper tube has been performed. Experiments involved a relatively wide range of operational conditions. Experiments were performed at the evaporating temperatures of 8°C and 15°C. Quality, mass velocity and heat flux varied in the following ranges: 5% to saturated vapor, 50–500 kg/(s m2); and 5–20 kW/m2. Effects of these physical parameters over the heat transfer coefficient have been investigated. High quality experiments were also performed up to the point of the tube surface dryout, a mechanism which was investigated from the qualitative point of view. Two heat transfer coefficient correlations from the literature have been evaluated through comparisons with experimental data. Deviations varied in the range from −25% to 42%.  相似文献   

11.
Two-phase flow regime visualizations of HFO-1234yf and R-134a in a 6.70 mm inner diameter glass straight tube have been simultaneous investigated by top and side views with a high speed high resolution camera. No major difference was observed between both refrigerants. HFO-1234yf flow regimes were satisfactorily predicted by the Wojtan et al. [1] flow pattern map. In addition, 819 pressure drop data points measured during two-phase flow of refrigerants HFO-1234yf, R-134a and R-410A in horizontal straight tubes are presented. The tube diameter (D) varies from 7.90 to 10.85 mm. The mass velocity ranges from 187 to 1702 kg m−2 s−1 and the saturation temperatures from 4.8 °C to 20.7 °C. The results are compared against 10 well-known two-phase frictional pressure drop prediction methods. For the entire database, the best accuracy is given by the method of Müller-Steinhagen and Heck [2] with around 90% of the data predicted within a ±30% error band. An analysis was carried out on the maximum pressure gradient and on the corresponding vapor quality. A statistical analysis for each flow regime was also carried out.  相似文献   

12.
Two-dimensional (circumferential and axial) wall temperature distributions were measured for top-heated coolant channels with internal geometries that include smooth walls, spiral fins and both twisted tape and spiral fins. Freon-71 was the working fluid. The flow regimes studied were single-phase, subcooled flow boiling, and stratified flow boiling. The inside diameter of all test sections was near 10.0 mm. Circumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a volumetric flow rate of 4.738 x 10−5m3/s, 0.19 MPa (absolute) exit pressure, and 22.2°C inlet subcooling. Overall (averaged over the entire channel) heat transfer coefficients were compared for the various channel geometries. This comparison showed that the channel with large-pitch spiral fins had higher heat transfer coefficients at all power levels. However, the results appear to indicate that if the twist ratio (ratio of the twisted tape period to the inside diameter) is decreased, the configuration employing both fins and a twisted tape will have had greater enhancements.  相似文献   

13.
This paper presents the experimental results of condensation heat transfer coefficients of hydrocarbon (HC) refrigerants R-290 and R-600a, hydrochlorofluorocarbon (HCFC) refrigerant R-22, and hydrofluorocarbon (HFC) refrigerant R-134a in a horizontal double-pipe heat exchanger having pipe inner diameters of 10.07, 7.73, 6.54, and 5.80 mm. The condensation process experiments were conducted at mass flux of 35.5–210.4 kg/ms and condensation temperature of 40°C. The main results were summarized as follows: The average condensation heat transfer coefficients of R-290 and R-600a were higher than those of R-22 and R-134a. The pressure drops of the four refrigerants were in the order of R-600a > R-290 > R-134a > R-22. The pressure drops of R-600a, R-290, R-134a, and R-22 were approximately 6–15, 9.8–12.5, 4.3–6.7, and 2.1–4.6% higher, respectively, in the 10.7 mm diameter tubes compared to the 5.80 mm diameter tubes. Comparing the condensation heat transfer coefficients of our experimental results with those of other correlations, our experimental data in all the test tubes coincided best with that of Haraguchi et al.  相似文献   

14.
This part of the paper presents the current experimental flow boiling heat transfer and CHF data acquired for R134a, R236fa and R245fa in single, horizontal channels of 1.03, 2.20 and 3.04 mm diameters over a range of experimental conditions. The aim of this study is to investigate the effects of channel confinement, heat flux, flow pattern, saturation temperature, subcooling and working fluid properties on the two-phase heat transfer and CHF. Experimentally, it was observed that the flow boiling heat transfer coefficients are a significant function of the type of two-phase flow pattern. Furthermore, the monotonically increasing heat transfer coefficients at higher vapor qualities, corresponding to annular flow, signifies convective boiling as the dominant heat transfer mechanism in these small scale channels. The decreasing heat transfer trend at low vapor qualities in the slug flow (coalescing bubble dominated regime) was indicative of thin film evaporation with intermittent dry patch formation and rewetting at these conditions. The coalescing bubble flow heat transfer data were well predicted by the three-zone model when setting the dryout thickness to the measured surface roughness, indicating for the first time a roughness effect on the flow boiling heat transfer coefficient in this regime. The CHF data acquired during the experimental campaign indicated the influence of saturation temperature, mass velocity, channel confinement and fluid properties on CHF but no influence of inlet subcooling for the conditions tested. When globally comparing the CHF values for R134a in the 0.51-3.04 mm diameter channels, a peak in CHF peak was observed lying in between the 0.79 (Co ≈ 0.99) and 1.03 (Co ≈ 0.78) mm channels. A new CHF correlation has been proposed involving the confinement number, Co that is able to predict CHF for R134a, R236fa and R245fa in single-circular channels, rectangular multichannels and split flow rectangular multichannels. In summary, the present flow boiling and CHF trends point to a macro-to-microscale transition as indicated by the results presented in Ong and Thome (2011) [1].  相似文献   

15.
The velocity of elongated vapor bubbles exiting two horizontal micro-evaporator channels with refrigerant R-134a was studied. Experiments with tube diameters of 509 and 790 μm, mass velocities from 200 to 1500 kg/m2 s, vapor qualities from 2% to 19% and a nominal saturation temperature of 30 °C were analyzed with a fast, high-definition digital video camera. It was found from image processing of numerous videos that the elongated bubble velocity relative to that of homogeneous flow increased with increasing bubble length until a plateau was reached, and also increased with increasing channel diameter and increasing mass velocity. Furthermore an analytical model developed for a diabatic two-phase flow, has been proposed that is able to predict these trends. In addition, the model shows that the relative elongated bubble velocity should decrease with increasing pressure, which is consistent with the physics of two-phase flow.  相似文献   

16.
The flow boiling heat transfer coefficients of R-134a/R-290/R-600a (91%:4.068%:4.932% by mass) refrigerant mixture are experimentally arrived in two tubes of diameter 9.52 and 12.7 mm. The tests are conducted to target the varied heat flux condition and stratified flow pattern found in evaporators of refrigerators and deep freezers. The varied heat flux condition is imposed on the refrigerant using a coaxial counter-current heat exchanger test section. The experiments are performed for mass flow rates of the refrigerant mixture between 3 and 5 g s−1 and entry temperature between −8.59 and 5.33°C which are bubble temperatures corresponding to a pressure of 3.2 and 5 bar. The influences of heat flux, mass flow rate, pressure, flow pattern, tube diameter on the heat transfer coefficient are discussed. The profound effects of nucleate boiling prevailing even at higher vapor qualities in evaporators are highlighted. The heat transfer coefficient of the refrigerant mixture is also compared with that of R-134a.  相似文献   

17.
This research focuses on heat transfer to R-134a during flow boiling in a 1.75 mm internal diameter tube. Flow visualisation and heat transfer experiments are conducted to obtain heat transfer coefficients for different flow patterns. The measured data in each flow regime are compared with predictions from a three-zone flow boiling model. The calculations are in fair agreement with the experimental results which correspond in particular to slug flow, throat-annular flow and churn flow regimes under conditions of low heat flux.  相似文献   

18.
Our purpose is to design a high heat flux micro-evaporator that can remove more than 100 W/cm2. For this purpose a thin liquid film is evaporized. The liquid film is stabilized in micro-channels by capillary forces. The micro-channels are fabricated by chemical etching on silicon to reduce thermal resistance. For the experiments, the channel plate is heated by an ITO thin film heater deposited on the opposite side of the channel plate. Influence of heat flux, coolant flow rate, and inlet temperature on the temperature of the heater element are investigated. Water is used as working fluid. A maximal heat flux of 125 W/cm2 could be achieved for water inlet temperature of 90 °C and flow rate of 1.0 mL/min. The temperature of the heater element is kept constant at about 120 °C with fluctuations within 8 °C. The measured pressure drop is less than 1000 Pa.  相似文献   

19.
Measurements of quasi-static advancing contact angles of refrigerant R134a on copper and aluminum surfaces are reported over a temperature range from 0 °C to 80 °C. The metal surfaces tested were aluminum (alloy 3003) and copper (alloy 101) plates. Measurements were done using a direct optical observation technique where the liquid meniscus at the surface of a vertical plate was captured using a high magnification camera system. The contact angle of solid–liquid interface was deduced by enhancing and manipulating the digital image using solid modeling software by drawing a tangent line to the meniscus at the intersection location of the solid, liquid and vapor. Values of the contact angle were found to vary between 8.3° and 5.6° for aluminum and between 5.1° and 6.5° for copper when the temperature rose from 0 °C to 80 °C. Maximum standard deviation amongst the measured values of contact angles was 1.3°.  相似文献   

20.
This paper presents the experimental result of a study on the effects of heat transfer enhancement on two-phase flow instabilities in a horizontal in-tube flow boiling system. Five different heat transfer surface configurations and five different inlet temperatures are used to observe the effect of heat transfer enhancement and inlet subcooling. All experiments are carried out at constant heat input, system pressure and exit restriction. Dynamic instabilities, namely pressure-drop type, density-wave type and thermal oscillations are found to occur for all the investigated temperatures and enhancement configurations, and the boundaries for the appearance of these oscillations are found. The effect of the enhancement configurations on the characteristics of the boiling flow dynamic instabilities is studied in detail. The comparison between the bare tube and the enhanced tube configurations are made on the basis of boiling flow instabilities. Differences among the enhanced configurations are also determined to observe which of them is the most stable and unstable one. The amplitudes and periods of pressure-drop type oscillations and density-wave type oscillations for tubes with enhanced surfaces are found to be higher than those of the bare tube. The bare tube is found to be the most stable configuration, while tube with internal springs having bigger pitch is found to be the most unstable one among the tested tubes. It is found that system stability increases with decreasing equivalent diameter for the same type heater tube configurations; however, on the basis of effective diameter there is no single result such as stability increase/decrease with increasing/decreasing effective diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号