首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This study focuses on the green synthesis of silver and gold nanoparticles using the marine algae extract, Sargassum horneri, as well as the degradation of organic dyes using biosynthesized nanoparticles as catalysts. The phytochemicals of the brown algae Sargassum horneri acted as reducing and capping agents for nanoparticle synthesis. Ultraviolet–visible absorption spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy were used to characterize the biosynthesized nanoparticles. The green-synthesized SH-AgNPs and SH-AuNPs exhibited high catalytic activity for degradation of organic dyes, such as methylene blue, rhodamine B, and methyl orange. The reduction reactions of dyes are based on pseudo-first-order kinetics.  相似文献   

2.
In this work it is reported the synthesis of gold nanoparticles supported in situ in chitosan by solvated metal atom dispersion technique in order to study the inclusion of Au nanoparticles in the biopolymer matrix. To study their aggregation along time and compare with the synthesis of Au/2-propanol colloid by chemical liquid deposition technique. Studies of Au nanoparticles aggregation along time, supported nanoparticles and colloidal nanoparticles morphology were also carried out. The characterization of Au nanoparticles was performed by transmission electron microscopy, field-emission and scanning electron microscopy, infrared spectroscopy, X-ray diffraction, light scattering and ultraviolet–visible spectroscopy. Metal colloid showed fractal agglomeration type and delay time after the synthesis, the agglomeration size increased to flocculate. Au nanoparticles supported in chitosan showed the same shape as colloids and fractal aggregation was mostly distributed on the matrix.  相似文献   

3.
提出了一种简便易行的对磁性纳米粒子表面进行氨基化的方法. 首先使用化学共沉淀法合成了粒径为10 nm左右的Fe3O4纳米粒子, 然后用阿仑膦酸钠对其表面进行修饰, 使其表面具有了功能化的氨基. 利用透射电子显微镜(TEM)、X射线衍射(XRD)、振动样品磁强计(VSM)、动态光散射(DLS)仪、热重分析(TGA)仪、傅里叶变换红外(FT-IR)光谱仪、X射线光电子能谱(XPS)仪等对其进行表征. 结果显示磁性纳米粒子表面被成功地修饰了一层双膦酸分子. 所制备的纳米粒子可在pH=6.3稳定存在4周以上.  相似文献   

4.
陈霞  翟翠萍 《化学研究》2014,(1):20-23,32
以氯金酸为前驱体,十二烷基硫醇和硼氢化钠分别作为稳定剂和还原剂,采用相转移法制备了单分散的金纳米粒子.将金纳米粒子通过乳液聚合的方法制备了纳米金/聚苯乙烯复合粒子.通过紫外-可见吸收光谱(UV-Vis)研究了纳米金和纳米金/聚苯乙烯复合粒子的光吸收特性,使用傅立叶变换红外光谱(FT-IR)、X射线衍射(XRD)、透射电子显微镜(TEM)和动态光散射(DLS)对产物的组成、晶体结构、形貌、以及粒径进行了表征.结果表明,复合粒子为粒径分布较窄的球形,其中的金纳米粒子为面心立方结构.热失重分析(TGA)说明制备的纳米金/聚苯乙烯复合粒子具有很好的热稳定性.  相似文献   

5.
This report describes the structural and optical properties of a series of spherical shell/core nanoparticles in which the shell is comprised of a thin layer of gold, silver, or gold-silver alloy, and the core is comprised of a monodispersed silica nanoparticle. The silica core particles were prepared using the St?ber method, functionalized with terminal amine groups, and then seeded with small gold nanoparticles (approximately 2 nm in diameter). The gold-seeded silica particles were coated with a layer of gold, silver, or gold-silver alloy via solution-phase reduction of an appropriate metal ion or mixture of metal ions. The size, morphology, and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optical properties of the nanoparticles were analyzed by UV-vis spectroscopy, which showed strong absorptions ranging from 400 nm into the near-IR region, where the position of the plasmon band reflected not only the thickness of the metal shell, but also the nature of the metal comprising the shell. Importantly, the results demonstrate a new strategy for tuning the position of the plasmon resonance without having to vary the core diameter or the shell thickness.  相似文献   

6.
We report a novel strategy for the biological synthesis of anisotropic gold and quasi-spherical silver nanoparticles by using apiin as the reducing and stabilizing agent. The size and shape of the nanoparticles can be controlled by varying the ratio of metal salts to apiin compound in the reaction medium. The resultant nanoparticles were characterized by UV-vis-NIR, transmission electron microscopy (TEM), FT-IR spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The interaction between nanoparticles with carbonyl group of apiin compound was confirmed by using FT-IR analysis. TEM photograph confirming the average size of the gold and silver nanoparticles were found to be at 21 and 39 nm. The NIR absorption of the gold nanotriangles is expected to be of application in hyperthermia of cancer cells and in IR-absorbing optical coatings.  相似文献   

7.
Colloidal gold nanoparticles were prepared through in situ reduction in the presence of water-soluble star homopolymer with β-cyclodextrin core and poly[2-(dimethylamino) ethyl methacrylate] arms (star PDMAEMA-β-CD) at ambient temperature. In this process, star PDMAEMA-β-CD acted as both reducing agent and stabilizing agent for gold nanoparticles. More importantly, the optical properties and the morphology of star-PDMAEMA-β-CD-stabilized colloidal gold nanoparticles were sensitive to the solution pH due to structural changes of the polymer. Different assemblies can be formed by tuning the pH of the medium. Fourier transform infrared (FT-IR), UV-Vis absorption spectroscopy, transmission electron microscopy (TEM), dynamic laser light scattering (DLS) and X-ray diffraction (XRD) were used to characterize the synthetic gold nanoparticles and the pH-controlled assembly of gold nanoparticles.  相似文献   

8.
The biological synthesis of gold nanoparticles (AuNPs) of various shapes (triangle, hexagonal, and spherical) using hot water olive leaf extracts as reducing agent is reported. The size and the shape of Au nanoparticles are modulated by varying the ratio of metal salt and extract in the reaction medium. Only 20 min were required for the conversion into gold nanoparticles at room temperature, suggesting a reaction rate higher or comparable to those of nanoparticles synthesis by chemical methods. The variation of the pH of the reaction medium gives AuNPs nanoparticles of different shapes. The nanoparticles obtained are characterized by UV–Vis spectroscopy, photoluminescence, transmission electron microscopy (TEM), X-ray diffraction (XRD), FTIR spectroscopy and thermogravimetric analysis. The TEM images showed that a mixture of shapes (triangular, hexagonal and spherical) structures was formed at lower leaf broth concentration and high pH, while smaller spherical shapes were obtained at higher leaf broth concentration and low pH.  相似文献   

9.
A new aqueous-phase method for the preparation of stable gold nanoparticles by using 1,4,7,10,13,16,21,24-octaazabicyclo[8.8.8]hexacosane (azacryptand) as both reductant and stabilizer is reported. Reduction of HAuCl(4) with azacryptand at room temperature yields nano-sized particles within a short time. The obtained gold nanoparticles have been characterized by UV-vis spectroscopy, transmission electron microscopy, and X-ray diffraction. Comparison of FT-IR spectra of azacryptand before and after reaction revealed that azacryptand molecules reduce gold ions as the amino moieties in the molecules are oxidized to imino groups. The prepared gold nanoparticles show efficient surface-enhanced Raman scattering properties and can effectively catalyze reduction of 4-nitrophenol by sodium borohydride in aqueous solution.  相似文献   

10.
氧化铁磁性纳米粒子的表面配体交换及相转移   总被引:1,自引:1,他引:0  
以苯甲醇为单一溶剂, 通过常压、高温热解乙酰丙酮铁, 制备了尺寸单分散的四氧化三铁磁性纳米粒子. 采用透射电镜(TEM), X射线衍射(XRD), 动态光散射(DLS)等方法对粒子形貌和结构进行了表征. 利用傅里叶变换红外(FT-IR)光谱和热重分析(TGA)研究了所制备纳米粒子的表面化学, 结果表明稳定四氧化三铁粒子的是苯甲酸分子, 且表面覆盖度小于20%. 所制备的磁性纳米粒子可以在室温下方便地进行表面配体交换, 从而为氧化铁磁性纳米粒子的功能化提供新的途径.  相似文献   

11.
Eco friendly and green synthetic approach for the synthesis of metallic nanoparticles gained much importance in the recent era. In the present study, an environmental friendly and plant mediated synthetic approach was used for the synthesis of gold coated iron (Fe@Au) nanoparticles using extract solution of olive oil, licorice root (Glycyrrhiza glabra) and coconut oil (OLC). These extracts were acted as a reducing agent during the formation of core–shell nanoparticles that provides long-time stability, lower toxicity and higher permeability to specific target cells. In order to achieve the small sized, regular spherical shaped, and homogeneous nanoparticles optimum conditions were ensured. In fact, the use of microwave irradiation was offered higher reaction rate and better product. The Fe@AuNPs have been characterized by UV–Visible spectroscopy, Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), High resolution Transmission electron microscope (HR-TEM), Fourier Transform Infrared Spectroscopy (FT-IR), high-performance liquid chromatography (HPLC), High angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), Particle-Size Distribution (PSD), and Magnetic hysteresis loops. The synthesized gold coated iron nanoparticles showed significant antioxidant potential with maximum inhibition rates, the biosynthesized nanoparticles were also found effective against Helicobacter pylori (H. pylori) and ulcer.  相似文献   

12.
The synthesis of metal nanoparticles of different sizes, shapes, chemical composition and controlled monodispersity is an important area of research in nanotechnology because of their interesting physical properties and technological applications. Present work describes an eco-friendly method for the synthesis of spherical gold nanoparticles using aqueous extract of Macrotyloma uniflorum. The effects of quantity of extract, temperature and pH on the formation of nanoparticles are studied. The nanoparticles are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles with fcc phase is evident from HRTEM images, SAED and XRD patterns. Synthesized nanoparticles have size in the range 14-17nm. FTIR spectrum indicates the presence of different functional groups present in the bio-molecule capping the nanoparticles. The possible mechanism leading to the formation of gold nanoparticles is suggested.  相似文献   

13.
Environmental methodologies are gaining recognition in this modern world. Environmental nanotechnology plays a major role in improving modern fields of environmental engineering and science. Metal oxide nanoparticles have exceptional properties due to their small size, including quantum confinement, surface-to-volume ratio, plasmon excitation, high biocompatibility, and surface modifiability. The biosynthesis of nanoparticles using fungi, bacteria, and plants through various biotechnological techniques is currently a new paradigm for environmental protection. Synthesis of nanoparticles through plant extract is good because it eliminates the dangers of toxic chemicals, it is environmentally friendly, simpler, and safer as the reaction time is reduced and it can also be increased in size for higher operation. The present study is based on the development of zinc oxide nanoparticles from papaya leaf extract where zinc nitrate is used as a precursor. The biosynthesized nanoparticles are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, electron microscopy, energy-dispersive X-ray analysis, UV-visible spectroscopy, and dynamic light scattering analysis. The crystalline phase determination of the zinc oxide nanoparticles is analyzed by X-ray diffraction and the formation of polycrystalline zinc oxide nanoparticles is confirmed. FT-IR spectrum reveals the main functional groups and chemical information in zinc oxide nanostructures. Morphological analysis is performed using SEM at different magnification levels. EDAX analysis shows the purity of the composite samples. Optical characterization is performed using a UV–vis spectrophotometer. DLS analysis shows that the nanoparticles formed have a relatively well-defined dimension.  相似文献   

14.
Bioinspired silver nanoparticles were synthesized using nontoxic, eco-friendly, and novel root extract of Nepeta leucophylla. The reduction of silver nitrate salt into nanoparticles is performed using the root extract, which is rich in polyphenolic and flavonoid contents. The reduction of silver salt by this extract is occurred at several temperatures and the reaction mixture turns brown and displayed representative absorbance spectra of silver nanoparticles. The influence of numerous synthesis parameters such as the concentration of root extract, time, temperature, and reaction pH on the synthesis of silver nanoparticles was also examined. Furthermore, the synthesized silver nanoparticles were characterized by ultraviolet–visible spectroscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, and transmission electron and field emission scanning electron microscopy. The formation of silver nanoparticles was enhanced with time, temperature, and at basic pH. The surface plasmon resonance band characteristics of silver nanoparticles were detected at 410?nm in the ultraviolet–visible absorbance spectra. The infrared spectroscopy results show that the extract contains phenol which is responsible for reduction and proteins may be capping the silver nanoparticles which prevent agglomeration. Transmission electron microscopy revealed that silver nanoparticles were spherical and the sizes matched well with X-ray diffraction and theoretical calculations by Mie theory. Furthermore, the antioxidant potential of the synthesized silver nanoparticles was assessed using 2,2-diphenyl-1-picrylhydrazyl assay and showed considerable antioxidant potential.  相似文献   

15.
We report a facile, cost effective, and environmentally friendly green chemistry method for preparing silver nanoparticles (AgNPs) using Rubus crataegifolius bge (RCB) fruit extract. The amount of the fruit extract used was found to be important parameters in the growth of AgNPs. In this study, the effect of RCB fruit extract on the synthesis of AgNPs was studied using UV–Vis spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), and dynamic light scattering analyses were performed to characterize the RCB fruit extract-stabilized AgNPs. The formation of the AgNPs was confirmed by the color change of the reaction medium and the absorbance peak observed at 420 nm. The XRD analysis confirmed the face centered cubic structure of the AgNPs. The catalytic property of the as-synthesized AgNPs was analyzed for the reduction of 4-nitrophenol to 4-aminophenol.  相似文献   

16.
In this work, we exhibited the results of the green synthesis of gold nanoparticles by aqueous extract of Schinus molle L. leaves. The chemical reaction was carried out by varying the plant extract/precursor salt ratio concentration in the aqueous solution. The structural characterization of the nanoparticles was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD analysis showed that the as-synthesized AuNPs have a face-centered cubic structure. SEM and TEM observations indicated that most of the obtained particles have multiple twinning structures (MTP). The synthesized Au-MTP have particle sizes in the range of 10–60 nm, most of them with an average size of about 24 nm. However, triangular Au plate particles were also obtained, having an average size of 180 nm. Fourier transforms infrared spectroscopy and shows that the functional groups responsible for the chemical reduction of AuNPs are phenolic compounds present in the S. molle L. leaf.  相似文献   

17.
Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.  相似文献   

18.
Microwave synthesis of core-shell gold/palladium bimetallic nanoparticles   总被引:2,自引:0,他引:2  
The microwave-assisted polyol reduction method was applied to the synthesis of core-shell gold/palladium bimetallic nanoparticles by the simultaneous reduction of the AuIII and PdII ions. The thickness of the palladium shell was calculated to be approximately 3 nm, and the gold core diameter is 9 nm. The structure and composition of the bimetallic particles were characterized by high-resolution transmission electron microscopy equipped with a nanoarea energy-dispersive X-ray spectroscopy attachment, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy.  相似文献   

19.
In this investigation, we report the biosynthesis of the silver nanoparticles using Aloysia triphylla leaves extract. The as-prepared silver nanoparticles were characterized by ultraviolet–visible (Uv–vis) spectroscopy, X-ray diffractometry, scanning electron microscopy and transmission electron microscopy The infrared spectroscopy (FTIR) and Raman spectroscopy techniques were also used to evaluate the chemical groups of the plant extract involved in the silver ions bioreduction. The results indicate that as the plant extract/precursor salt ratio increases, the size of the nanoparticles decreases. Also, as the reaction temperature increases, the reduction rate increased too, resulting in the formation of smaller nanoparticles-size ranges. Uv–vis spectroscopy illustrates absorption peaks in the range of wavelengths of 430–445 nm corresponding to surface plasmon resonance band of silver nanoparticles. The X-ray diffraction (XRD) confirmed the presence of silver solids with fcc structure type. The FTIR analysis showed that the bands corresponding to phenolic compounds and the amide group were involved in the synthesis and stabilization of silver nanoparticles, respectively. The Raman studies showed bands at 1380 and 1610 cm?1, which correspond to the aromatic and amide compounds, confirming the FTIR results. The Uv–vis results indicate the capacity of silver nanoparticles to reduce the methylene blue.  相似文献   

20.

A simple method for preparing gold nanoparticles in aqueous solution has been developed by using glycosaminoglycan‐heparin as reducing and stabilizing agent and HAuCl4 as precursor. The obtained gold nanoparticles were characterized by UV‐vis spectroscopy, resonance light scattering spectroscopy (RLS), transmission electron microscopy (TEM) and electrophoresis technology. The influence of reactant concentration for the preparation of gold nanoparticles was investigated. The results indicated that the gold nanoparticles carried negative charges in the aqueous solution and the size and shape of the gold nanoparticles could be controlled by changing the concentration of the heparin. Moreover, the gold nanoparticles obtained with relatively high concentration of heparin were very stable and had relative narrow size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号