首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
The electrochemical properties of anthraquinone monosulfonate (AQS) adsorbed on the basal plane of chemically-reduced graphene oxide (RGO) by π–π stacking interaction were investigated. The AQS/RGO nanocomposites were synthesized via a simple reduction–adsorption method and characterized with various techniques, and the surface concentration of AQS on the basal plane of RGO was estimated to be 1.72?×?10?12 mol cm?2. Electrochemical tests showed that the AQS/RGO nanocomposites accelerated the heterogeneous electron transfer, when ferro/ferricyanide was used as a redox probe, and RGO facilitated the electron transfer between AQS and the surface of glassy carbon electrode, producing a well-defined redox couple centered at ?0.490 V versus SCE at neutral medium. Compared with AQS and RGO modified glassy carbon (GC) electrode, the AQS/RGO nanocomposites showed better electrocatalytic activity towards oxygen reduction reaction. Rotating disk electrode data showed that the reduction of O2 on AQS/RGO/GC electrode underwent a two-electron process to H2O2 at low overpotential and shifted to four-electron reduction to H2O at relatively high overpotential. The present work demonstrates that AQS can be an efficient catalyst when noncovalently functionalized on the basal plane of RGO for electrochemical applications.  相似文献   

2.
Facile and efficient reduction of graphene oxide (GO) and novel applications of the reduced graphene oxide (RGO) based materials are of current interest. Herein, we report a novel and facile method for the reduction of GO by using a biocompatible reducing agent dithiothreitol (DTT). Stabilization of DTT by the formation of a six‐membered ring with internal disulfide linkage upon oxidation is responsible for the reduction of GO. The reduced graphene oxide is characterized by several spectroscopic and microscopic techniques. Dispersion of RGO in DMF remained stable for several weeks suggesting that the RGO obtained by DTT‐mediated reduction is hydrophobic in nature. This method can be considered for large scale production of good quality RGO. Treatment of RGO with hemin afforded a functional hemin‐reduced graphene oxide (H‐RGO) hybrid material that exhibited remarkable protective effects against the potentially harmful peroxynitrite (PN). A detailed inhibition study on PN‐mediated oxidation and nitration reactions indicate that the interaction between hemin and RGO results in a synergistic effect, which leads to an efficient reduction of PN to nitrate. The RGO also catalyzes the isomerization of PN to nitrate as the RGO layers facilitate the rapid recombination of .NO2 with FeIV=O species. In the presence of reducing agents such as ascorbic acid, the FeIV=O species can be reduced to FeIII, thus helping to maintain the PN reductase cycle.  相似文献   

3.
Vertical polyaniline (PANI) nanowire arrays on graphene‐sheet‐coated polyester cloth (RGO/PETC) were fabricated by the in situ chemical polymerization of aniline. The 3D conductive network that was formed by the graphene sheets greatly enhanced the conductivity of PANI/RGO/PETC and improved its mechanical stability. PANI nanowire arrays increased the active surface area of PANI, whilst the hierarchically porous structure of the PANI/RGO/PETC electrode facilitated the diffusion of the electrolyte ions. Electrochemical measurements showed that the composite electrode exhibited a maximum specific capacitance of 1293 F g?1 at a current density of 1 A g?1. Capacitance retention was greater than 95 %, even after 3000 cycles, which indicated that the electrode material has excellent cycling stability. Moreover, the electrode structure endowed the PANI/RGO/PETC electrode with a stable electrochemical performance under mechanical bending and stretching.  相似文献   

4.
Journal of Solid State Electrochemistry - In this paper, we compare reduced graphene oxide (RGO) electrode with multi-walled carbon nanotubes (MWCNT) as modifiers for the sensitive detection of...  相似文献   

5.
The reduced graphene oxide (RGO)/bisphenol A (BPA) composites were prepared by an adsorption‐reduction method. The composites are characterized by X‐ray diffraction (XRD), UV‐vis, thermogravimetric (TG) analysis, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM). The results confirm that BPA is adsorbed on the basal plane of RGO by π‐π stacking interaction. Furthermore, the electrochemical behaviors were evaluated by cyclic voltammetry, galvanostatic charge/discharge techniques and electrochemical impedance spectroscopy (EIS). The results show that the RGO/BPA nanocomposites exhibit ultrahigh specific capacitance of 466 F·g?1 at a current density of 1 A·g?1, excellent rate capability (more than 81% retention at 10 A·g?1 relative to 1 A·g?1) and superior cycling stability (90% capacitance decay after 4000 cycles). Consequently, the RGO/BPA nanocomposites can be regarded as promising electrode materials for supercapacitor applications.  相似文献   

6.
In this work a partially reduced graphene oxide (p‐RGO) modified carbon ionic liquid electrode (CILE) was prepared as the platform to fabricate an electrochemical DNA sensor, which was used for the sensitive detection of target ssDNA sequence related to transgenic soybean A2704‐12 sequence. The CILE was fabricated by using 1‐butylpyridinium hexafluorophosphate as the binder and then p‐RGO was deposited on the surface of CILE by controlling the electroreduction conditions. NH2 modified ssDNA probe sequences were immobilized on the electrode surface via covalent bonds between the unreduced oxygen groups on the p‐RGO surface and the amine group at the 5′‐end of ssDNA, which was denoted as ssDNA/p‐RGO/CILE and further used to hybridize with the target ssDNA sequence. Methylene blue (MB) was used as electrochemical indicator to monitor the DNA hybridization. The reduction peak current of MB after hybridization was proportional to the concentration of target A2704‐12 ssDNA sequences in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 2.9×10?13 mol/L (3σ). The electrochemical DNA biosensor was further used for the detection of PCR products of transgenic soybean with satisfactory results.  相似文献   

7.
Herein we present β‐cyclodextrin (CD)‐functionalized reduced graphene oxide (RGO) nanosheets supported on silicate sol‐gel matrix‐embedded gold nanoparticles (Au NPs) modified electrode as a new affinity binding nanocomposite. The modified electrode is fabricated through layer‐by‐layer drop casting followed by immobilization of chemically modified enzyme conjugate (horse radish peroxidase (HRP)?adamantane carboxylic acid (ADA)). This affinity system is based on the supramolecular association between CDs and HRP?ADA and is mimicking the biological avidin?biotin interactions. CDs‐functionalized RGO (RGO?CD) functions as a macrocyclic host to form stable supramolecular inclusion complexes with enzyme conjugate. Besides Au NPs improve the interfacial interaction with RGO?CD nanosheets, and thus exhibit synergistic electrocatalytic effect toward H2O2 reduction in the presence of 1 mM hydroquinone.  相似文献   

8.
β‐CD modified reduced graphene oxide (RGO) sheets have been prepared and characterized by TEM, AFM, IR, EIS and CVs. In comparison with bare glass carbon electrode (GCE) and RGO modified GCE, CD‐RGO/GCE showed much higher peak currents to the reduction of nitrophenol isomers (NPs), attributed to the larger specific surface area of RGO and high quantities of host–guest recognition sites. Three pairs of redox peaks are observed on the CVs of CD‐RGO for p‐NP (0.3 V), o‐NP (?0.2 V) and m‐NP (0.05 V), separating well with each other. Under the optimized condition, the anodic peak currents were linear over ranges around 1–10 mg dm?3 for p‐NP, 1–9 mg dm?3 for o‐NP and 1–6 mg dm?3 for m‐NP, with the detection limits of 0.05 mg dm?3, 0.02 mg dm?3 and 0.1 mg dm?3, respectively. Thus, the CD‐RGO is expected to be a promising sensor material for detecting trace NPs in waste water.  相似文献   

9.
《Electroanalysis》2018,30(1):194-203
Glassy carbon electrode (GCE) modified with L‐cysteine and gold nanoparticles‐reduced graphene oxide (AuNPs‐RGO) composite was fabricated as a novel electrochemical sensor for the determination of Cu2+. The AuNPs‐RGO composite was formed on GCE surface by electrodeposition. The L‐cysteine was decorated on AuNPs by self‐assembly. Physicochemical and electrochemical properties of L‐cysteine/AuNPs‐RGO/GCE were characterized by scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, Raman spectroscopy, X‐ray diffraction, cyclic voltammetry and adsorptive stripping voltammetry. The results validated that the prepared electrode had many attractive features, such as large electroactive area, good electrical conductivity and high sensitivity. Experimental conditions, including electrodeposition cycle, self‐assembly time, electrolyte pH and preconcentration time were studied and optimized. Stripping signals obtained from L‐cysteine/AuNPs‐RGO/GCE exhibited good linear relationship with Cu2+ concentrations in the range from 2 to 60 μg L−1, with a detection limit of 0.037 μg L−1. Finally, the prepared electrode was applied for the determination of Cu2+ in soil samples, and the results were in agreement with those obtained by inductively coupled plasma mass spectrometry.  相似文献   

10.
A facile, fast, and convenient route was suggested for the fabrication of Prussian blue nano particles (PBNPs) assembled on reduced graphene oxide (RGO) modified glassy carbon electrode (PBNPs|RGO|GCE). RGO was electrodeposited on the surface of GCE and the prepared RGO|GCE was immersed into a ferric‐hexacyanoferrate(III) solution and PBNPs were assembled on the RGO|GCE for a certain period of time. The PBNPs film thickness can be easily controlled by adjusting the assembling duration. The developed PBNPs|RGO|GCE was successfully used for determining hydrogen peroxide, with a linear response over the concentration range 0.5‐400 μM, a good accuracy and precision, detection limit 0.44 μM, and sensitivity 1168 mA M?1 cm?2.  相似文献   

11.
《Electroanalysis》2017,29(4):1154-1160
Oxidation and reduction processes of the insecticide fenthion was comparatively investigated at a reduced graphene oxide modified glassy carbon electrode (RGO‐GCE) and a cyclic renewable silver amalgam film electrode (Hg(Ag)FE) using square wave stripping voltammetry (SWSV). The influence of pH and SW parameters was investigated. The linear concentration ranges were found to be 1 × 10−6 – 2 × 10−5 and 1 × 10−7 – 2 × 10−5 mol L−1 for Hg(Ag)FE and RGO‐GCE, respectively. The detection and quantification limits were calculated as 1.3 × 10−7 and 4.5 × 10−7 mol L−1 for Hg(Ag)FE and 7.6 × 10−9 and 2.5 × 10−8 mol L−1 for RGO‐GCE. Both of the developed electroanalytical methods offer rapid and simple detection of fenthion and were used on spiked tap and river water and apple juice samples. Scanning electron microscopy was used for RGO‐GCE surface characterization.  相似文献   

12.
High performance reduced graphene oxide (RGO)‐Nafion (N) thin film electrodes coated on silicon (Si) substrates (RGO‐N/Si) were successfully developed through thermal reduction of GO‐N without delamination from the substrates. The restoration of the RGO‐N nanostructure upon the addition of Nafion was proven by Raman spectroscopy (RS) and field emission scanning electron microscopy, and the restoration mechanism of the RGO‐N nanostructure was proposed. Through the investigation using x‐ray photoelectron spectroscopy (XPS), the polyfluorocarbon from Nafion possessed a function that could prevent the delamination of the RGO sheets from the substrates during the thermal reduction. The RGO‐N/Si samples were later used for the determination of trace heavy metals, such as divalent lead, cadmium and copper ions (Pb2+, Cd2+ and Cu2+, respectively) using square wave anodic stripping voltammetry in a 0.1 M acetate buffer solution (pH 5). Based on the electroanalytical measurements, the RGO‐N/Si samples exhibited a highly linear behavior in the detection of Cd2+, Pb2+ and Cu2+ over the concentration range of 50 nM to 300 nM with detection limits at nM levels. In addition, the RGO‐N/Si samples presented good recoveries of target metals in tap water samples.  相似文献   

13.
In this report, ruthenium nanoparticles (RuNPs) and calix[4]amidocrown‐5 (C4A5) were synthesized and grafted onto the surface of reduced graphene oxide (RGO) nanocomposite (RuNPs/C4A5/RGO). The morphologies of the nanocomposites were characterized by transmission electron microscope, scanning electron microscope, atomic force microscope, electrochemical impedance spectroscopy and x‐ray photoelectron spectroscopy. The electrochemical experiments were performed by cyclic voltammetry, electrochemical impedance spectroscopy and square wave voltammetry. The simultaneous determination of quercetin, rutin and morin was performed on glassy carbon electrode modified with RuNPs/C4A5/RGO (RuNPs/C4A5/RGO/GCE). The linearity ranges and the detection limits of QR, RT and MR were 1.0×10?10–1.0×10?8 M and 2.0×10?11 M respectively.  相似文献   

14.
A one-step electrochemical approach for synthesis of Pt nanoparticles/reduced graphene oxide(Pt/RGO) was demonstrated.Graphene oxide(GO) and chloroplatinic acid were reduced to RGO and Pt nanoparticles(Pt NPs) simultaneously,and Pt/RGO composite was deposited on the fluorine doped SnO 2 glass during the electrochemical reduction.The Pt/RGO composite was characterized by field emission-scanning electron microscopy,Raman spectroscopy and X-ray photoelectron spectroscopy,which confirmed the reduction of GO and chloroplatinic acid and the formation of Pt/RGO composite.In comparison with Pt NPs and RGO electrodes obtained by the same method,results of cyclic voltammetry and electrochemical impedance spectroscopy measurements showed that the composite electrode had higher catalytic activity and charge transfer rate.In addition,the composite electrode had proved to have better performance in DSSCs than the Pt NPs electrode,which showed the potential application in energy conversion.  相似文献   

15.
We investigated an influence of amine adlayer on electrochemical sensing performances for uric acid detection on reduced graphene oxide (RGO)‐decorated indium‐tin oxide electrode surfaces. Various amine‐terminated molecules including aminoethyl aryldiazonium cation, 2,2′‐(ethylenedioxy)bis(ethylamine), 3‐aminopropyltriethoxysilane, polyethyleneimine were introduced as adlayers to electrostatically immobilize RGO on the electrode surfaces. The anodic oxidation current of uric acid was observed on the various surfaces with differential pulse voltammetry. The current was highly enhanced by electrocatalytic activity of RGO. The sensing performances including linearity, sensitivity, limit of detection, and correlation coefficient were measured and compared. The adlayer with 3‐aminopropyltriethoxysilane showed the best performances on the RGO‐modified surface.  相似文献   

16.
Yan Zhang  Jing Zheng  Mandong Guo 《中国化学》2016,34(12):1268-1276
An innovative molecularly imprinted electrochemical sensor was fabricated based on reduced graphene oxide (RGO) and gold nanocomposite (Au) for rapid detection of vincristine (VCR). The RGO‐Au composite membrane was obtained via direct one‐step electrodeposition technique of graphene oxide (GO) and chloroauric acid (HAuCl4) on the surface of a glassy carbon electrode (GCE) by means of cyclic voltammetry (CV) in the potential range between ?1.5 and 0.6 V in phosphate buffer solution (PBS) of pH 9.18, which is capable of effectively utilizing its superior electrical conductivity, larger specific surface area due to its synergistic effect between RGO and Au. The molecularly imprinted polymers (MIPs) were synthesized on the RGO‐Au modified glassy carbon electrode surface with VCR as the template molecular, methyl acrylic acid (MAA) as the functional monomer, and ethylene glycol maleic rosinate acrylate (EGMRA) as a cross‐linker. The performance of the sensor was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) in detail. Under the optimum conditions, the fabricated sensor exhibited a linear relationship between oxidation peak current and VCR concentration over the range of 5.0×10?8–5.0×10?6 mol·L minus;1 with a correlation coefficient of 0.9952 and a detection limit (S/N=3) of 2.6×10minus;8 mol·Lminus;1. The results indicated that the imprinted polymer films exhibited an excellent selectivity for VCR. The imprinted sensor was successfully used to determine VCR in real samples with recoveries of 90% –120% by using the standard addition method.  相似文献   

17.
In the present research, the electro oxidation of methanol was investigated by different electrochemical methods at a carbon paste electrode (CPE) modified with bis(salicylaldehyde)‐nickel(II)‐dihydrate complex (Ni(II)‐BS) and reduced graphene oxide (RGO) (which named Ni(II)‐BS/RGO/CPE) in an alkaline solution. This modified electrode showed very efficient activity for oxidation of methanol. It was found that methanol was oxidized by NiOOH groups generated by further electrochemical oxidation of nickel (II) hydroxide on the surface of the modified electrode. The rate constant and electron transfer coefficient were calculated to be 2.18 s?1 and 0.4, respectively. The anodic peak currents revealed a linear dependency with the square root of scan rate. This behaviour is the characteristic of a diffusion controlled process, so the diffusion coefficient of methanol was found to be 1.16×10?5 cm2 s?1 and the number of transferred electron was calculated to be 1. Moreover, differential pulse voltammetry (DPV) investigations showed that the peak current values were proportional to the concentration of methanol in two linear ranges. The obtained linear ranges were from 0.5 to 100.0 µM (R2=0.991) and 400.0 to 1300.0 µM (R2=0.992), and the detection limit was found to be 0.19 µM for methanol determination. Generally, the Ni(II)‐BS/RGO/CPE sensor was used for determination of methanol in an industrial ethanol solution containing 4.0 % methanol.  相似文献   

18.
Graphene‐polymer nanocomposites have significant potential in many applications such as photovoltaic devices, fuel cells, and sensors. Functionalization of graphene is an essential step in the synthesis of uniformly distributed graphene‐polymer nanocomposites, but often results in structural defects in the graphitic sp2 carbon framework. To address this issue, we synthesized graphene oxide (GO) by oxidative exfoliation of graphite and then reduced it into graphene via self‐polymerization of dopamine (DA). The simultaneous reduction of GO into graphene, and polymerization and coating of polydopamine (PDA) on the reduced graphene oxide (RGO) surface were confirmed with XRD, UV–Vis, XPS, Raman, TGA, and FTIR. The degree of reduction of GO increased with increasing DA/GO ratio from 1/4 to 4/1 and/or with increasing temperature from room temperature to 60 °C. A RAFT agent, 2‐(dodecylthiocarbonothioylthio)?2‐methylpropionic acid, was linked onto the surface of the PDA/RGO, with a higher equivalence of RAFT agent in the reaction leading to a higher concentration of RAFT sites on the surface. Graphene‐poly(methyl methacrylate), graphene‐poly(tert‐butyl acrylate), and graphene‐poly(N‐isopropylacrylamide) nanocomposites were synthesized via RAFT polymerization, showing their characteristic solubility in several different solvents. This novel synthetic route was found facile and can be readily used for the rational design of graphene‐polymer nanocomposites, promoting their applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3941–3949  相似文献   

19.
A novel glucose biosensor was developed based on the immobilization of glucose oxidase (GOx) on reduced graphene oxide incorporated with electrochemically deposited platinum and palladium nanoparticles (PtPdNPs). Reduced graphene oxide (RGO) was more hybridized by chemical and heat treatment. Bimetallic nanoparticles were deposited electrochemically on the RGO surface for potential application of the Pd? Pt alloy in biosensor preparation. The as‐prepared hybrid electrode exhibited high electrocatalytic activities toward H2O2, with a wide linear response range from 0.5 to 8 mM (R2=0.997) and high sensitivity of 814×10?6 A/mMcm2. Furthermore, glucose oxidase with active material was integrated by a simple casting method on the RGO/PdPtNPs surface. The as‐prepared biosensor showed good amperometric response to glucose in the linear range from 2 mM to 12 mM, with a sensitivity of 24×10?6 A/mMcm2, a low detection limit of 0.001 mM, and a short response time (5 s). Moreover, the effect of interference materials, reproducibility and the stability of the sensor were also investigated.  相似文献   

20.
《化学:亚洲杂志》2017,12(17):2284-2290
This work demonstrates a facile in situ synthesis of cobalt–manganese mixed sulfide (CoMn‐S) nanocages on reduced graphene oxide (RGO) sheets by using a crystalline Co–Mn precursor as the sacrificial template. The CoMn‐S/RGO hybrid was applied as the anode for Li‐ion storage and exhibited superior specific capacity, excellent cycling performance, and great rate capability. In particular, lithium storage testing revealed that the hybrid delivered high discharge–charge capacities of 670 mA h g−1 at 1.0 A g−1 after 400 cycles and 925 mA h g−1 at 0.1 A g−1 after 300 cycles. The outstanding electrochemical performance of CoMn‐S/RGO is attributed to the close entanglement of nanocages with RGO nanosheets achieved by the synthetic method, which greatly improves ion/electron transport along the interfaces and efficiently mitigates volume dilation during lithium reactions. This rational design of both the composition and architecture of mixed metal sulfides can be expanded to other composite systems for high‐capacity Li‐ion batteries and provides a unique insight into the development of advanced hybrid electrode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号