首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The planar 3,4‐diphosphinidenecyclobutene (DPCB) can be remarkably twisted into a C2‐type helical structure by dual coordination of a AuCl moiety. A prompt chirality control of the twisted DPCB skeleton ligated by the digold units affords the enantiopure structure by exchanging the chloride ligands for chiral [1,1′‐binaphthalene]‐2,2′‐dicarboxylate. The chirality of the diaurated 2,2′‐bis(diphenylphosphanyl)‐1,1′‐biphenyl (BIPHEP) system can be controlled prior to that of DPCB. Mixing of a DPCB‐bis(chlorogold) complex with the chiral silver salt dynamically leads to a single diastereomer, which was characterized by the 31P NMR spectrum and the CD couplet patterns in the visible (DPCB) area. The absolute configuration of the singly induced helical structure was assigned by the theoretical CD spectra determined by TD‐DFT calculations. Intramolecular alkoxycyclization of hexa‐4,5‐dien‐1‐ol catalyzed by the asymmetric DPCB‐digold structure were also attempted.  相似文献   

2.
Dynamic assembly inclusion complexes of tweezer-type bis(zinc porphyrin) (1) with di(4-pyridyl)porphyrin derivatives have been designed and constructed. The complexes are induced by Zn-N coordination, and the weak binding allows the large-size di(4-pyridyl)porphyrin guests in random rotation. Dynamic characteristics of these assemblies, such as ligand exchange and dynamic fluorescence quenching, have been investigated by 1H NMR, UV-Vis and fluorescence spectra. The stability of such assembly has pronounced dependence on the size-matching effect and thermal effect.  相似文献   

3.
A new type of ligand, which is able to form axially chiral, supramolecular complexes was designed using DFT calculations. Two chiral monomers, each featuring a covalently bound chiral auxiliary, form a bidentate phosphine ligand with a twisted, hydrogen‐bonded backbone upon coordination to a transition metal center which results in two diastereomeric, tropos complexes. The ratio of the diastereomers in solution is very temperature‐ and solvent‐dependent. Rhodium and platinum complexes were analyzed through a combination of NMR studies, ESI‐MS measurements, as well as UV‐VIS and circular dichroism spectroscopy. The chiral self‐organized ligands were evaluated in the rhodium‐catalyzed asymmetric hydrogenation of α‐dehydrogenated amino acids and resulted in good conversion and high enantioselectivity. This research opens the way for new ligand designs based on stereocontrol of supramolecular assemblies through stereodirecting chiral centers.  相似文献   

4.
Encapsulation of chiral guests in the dissymmetric capsule 1?4 BF4 formed diastereomeric supramolecular complexes G ? 1?4 BF4 ( G : guest). When chiral guests 2 a – q were encapsulated within the dissymmetric space of the self‐assembled capsule 1?4 BF4, circular dichroism (CD) was observed at the absorption bands that are characteristic of the π–π* transition of the bipyridine moiety of the capsule, which suggests that the P and M helicities of the capsule are biased by the chiral guest complexation. The P helicity of diastereomeric complex (S)‐ 2 l ? 1?4 BF4 was determined to be predominant, based on CD exciton coupling theory and DFT calculations. The diastereoselectivity was highly influenced by the ester substituents, such that benzyl ester moieties were good for improving the diastereoselectivity. A diastereomeric excess of 98 % was achieved upon the complexation of 2 j . The relative enthalpic and entropic components for the distereoselectivity were obtained from a van’t Hoff plot. The enthalpic components were linearly correlated with the substituent Hammett parameters (σp+). The electron‐rich benzyl ester moieties generated donor–acceptor π–π stacking interactions with the bipyridine moiety, which resulted in a significant difference in energy between the predominant and subordinate diastereomeric complexes.  相似文献   

5.
Two 3,6‐bis(R‐1H‐1,2,3‐triazol‐4‐yl)pyridazines (R=mesityl, monodisperse (CH2 CH2O)12CH3) were synthesized by the copper(I)‐catalyzed azide–alkyne cycloaddition and self‐assembled with tetrakis(acetonitrile)copper(I) hexafluorophosphate and silver(I) hexafluoroantimonate in dichloromethane. The obtained copper(I) complexes were characterized in detail by time‐dependent 1D [1H, 13C] and 2D [1H‐NOESY] NMR spectroscopy, elemental analysis, high‐resolution ESI‐TOF mass spectrometry, and analytical ultracentrifugation. The latter characterization methods, as well as the comparison to analog 3,6‐di(2‐pyridyl)pyridazine (dppn) systems and their corresponding copper(I) and silver(I) complexes indicated that the herein described 3,6‐bis(1H‐1,2,3‐triazol‐4‐yl)pyridazine ligands form [2×2] supramolecular grids. However, in the case of the 3,6‐bis(1‐mesityl‐1H‐1,2,3‐triazol‐4‐yl)pyridazine ligand, the resultant red‐colored copper(I) complex turned out to be metastable in an acetone solution. This behavior in solution was studied by NMR spectroscopy, and it led to the conclusion that the copper(I) complex transforms irreversibly into at least one different metal complex species.  相似文献   

6.
NHC adducts of the stannylene Trip2Sn (Trip=2,4,6‐triisopropylphenyl) were reacted with zero‐valent Ni, Pd, and Pt precursor complexes to cleanly yield the respective metal complexes featuring a three‐membered ring moiety Sn‐Sn‐M along with carbene transfer onto the metal and complete substitution of the starting ligands. Thus the easily accessible NHC adducts to stannylenes are shown to be valuable precursors for transition‐metal complexes with an unexpected Sn? Sn bond. The complexes have been studied by X‐ray diffraction and NMR spectroscopy as well as DFT calculations. The compounds featuring the structural motif of a distannametallacycle comprised of a [(NHC)2M0] fragment and Sn2Trip4 represent rare higher congeners of the well‐known olefin complexes. DFT calculations indicate the presence of a π‐type Sn–Sn interaction in these first examples for acyclic distannenes symmetrically coordinating to a zero‐valent transition metal.  相似文献   

7.
The title compounds were generated by deprotonation of different benzyl‐type carbamates with sec‐butyllithium in the presence of chiral diamines (?)‐sparteine or diisopropyl and di‐tert‐butyl bis(oxazoline)s. These lithiated species exhibit configurational lability at ?78 °C. In the case of the chiral di‐tert‐butyl bis(oxazoline), the equilibrium of the epimeric complexes can be used synthetically to obtain highly enantioenriched secondary benzyl carbamates. The enantiodetermining step was proven to be a dynamic thermodynamic resolution. The absolute configurations of the products were determined, and the stereochemical pathways of selected substitution reactions were thus elucidated. High‐level quantum chemical investigations were performed to gain insight into the experimentally investigated system. To obtain an accuracy for the energy difference (ΔΔH) between two epimeric complexes of about 0.5 kcal mol?1 as well as the correct sign, a theoretical procedure was established. It included geometry optimization at the dispersion‐corrected DFT level, computation of zero‐point vibrational energies, and single‐point SCS‐MP2 energy calculations with large atomic‐orbital basis sets.  相似文献   

8.
Selenium‐based enantiopure chiral chemical probes have been designed in a modular way starting from available amino alcohols. The probes developed were found to be efficient in chemoselective interaction with carboxylic functions of chiral substrates leading to diastereomeric amide formation and in sensing α‐, β‐, and remote (up to seven bonds away from the carboxylic group) chiral centers by using 77Se NMR spectroscopy. As a result, it was possible to determine the enantiomeric ratio of structurally diverse individual chiral acids including polyfunctional compounds and drugs with high accuracy. An approach to analyzing the crude reaction mixtures has been successfully developed by using bifunctional selenium‐ and fluorine‐containing chiral probes. More importantly, it was revealed that, based on the 77Se NMR data obtained, it is possible to obtain primary information about the location and nature of the substituents at the chiral center (chemo‐ and enantiosensing), which can simplify the structural elucidation of complex compounds. The derivatization procedure takes as little as 5 min and can be performed directly in an NMR tube followed by NMR measurements without any isolation and purification steps.  相似文献   

9.
Nine mononuclear diorganotin(IV) dithiocarbamate complexes 1 – 9 with 19‐, 20‐ and 21‐membered macrocyclic structures were synthesized from dimethyl, di‐n‐butyl, and diphenyltin(IV) dichloride and three bis‐dithiocarbamate ligands derived from secondary bis‐amines having aromatic spacer groups. All compounds were characterized by elemental analysis, mass spectrometry, and spectroscopic methods (IR and 1H, 13C, and 119Sn NMR). Additionally, quantum chemical DFT calculations were performed for the dimethyltin(IV) derivatives in order to model the molecular structures. For one compound series the NMR spectra showed a concentration‐dependent behavior in solution, which was analyzed in detail and permitted to postulate the existence of an equilibrium with the corresponding [2+2] macrocycles.  相似文献   

10.
The enantiodiscriminating polymerization of racemic cyclodextrin‐complexed N‐methacryloyl‐phenylalanine methyl ester is investigated. 1H NMR spectra of the complexes with methylated β‐cyclodextrin in D2O manifest splittings due to chiral recognition. The different stabilities of the diastereomeric complexes influence the kinetics of the homopolymerization, particularly at 0 °C. An enrichment of the residual N‐methacryloyl‐L ‐phenylalanine methyl ester of 14 % was achieved after 21 h of polymerization.  相似文献   

11.
It was serendipitously observed that cis‐[PtCl2(NCEt)PPh3] reacted differently with either racemic or enantiopure 4‐aza[6]helicene, giving respectively cis (racemic) and trans (enantiopure) [PtIICl2(4‐aza[6]helicene)PPh3] complexes. This unexpected reactivity is explained through a dynamic process (crystallization‐induced diastereoselective transformation) and enables a new aspect of reactivity in chiral transition‐metal complexes to be addressed.  相似文献   

12.
Abstract

Diastereomeric adducts of chiral soft-base selenium ligands with the enantiopure dirhodium complex Rh* allows stereodifferentiation by NMR spectroscopy of various nuclei (dirhodium method). The individual adduct species can be identified by low-temperature NMR spectroscopy.  相似文献   

13.
In this article, we have described the asymmetric cyclization of L‐serinoates and N‐benzyl L‐serinoate with phosphoro(no‐)dichloridates or their thio‐analog, respectively, and we have investigated the asymmetric induction effect of the chiral carbon center on the forming of a chiral phosphorus center. The diastereomeric excess percentages (de%) of the desired products 2‐oxo‐ and 2‐thio‐1,3,2‐oxazaphospholidines, are obtained based on their 31P NMR data. In some cases, the cyclization products have been separated as pure diastereomers by column chromatography. Their configuration is preliminarily discussed. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:187–191, 2000  相似文献   

14.
The synthesis and aggregation behavior of meso‐sulfinylporphyrins are described. The copper‐catalyzed C–S cross‐coupling reaction of a meso‐iodoporphyrin with benzenethiol and n‐octanethiol has proved to be an efficient method for the synthesis of meso‐sulfanylporphyrins, which are oxygenated by m‐chloroperbenzoic acid to produce the corresponding meso‐sulfinylporphyrins. Optically active zinc meso‐sulfinylporphyrins were successfully isolated by means of optical resolution of the racemates on a chiral HPLC column. Zinc sulfinylporphyrins readily undergo self‐organization through S–oxo–zinc coordination to form cofacial porphyrin dimers in solution, in which the hetero‐ and homodimers are present as a diastereomeric mixture. The aggregation modes of the S–oxo‐tethered porphyrin dimers were fully characterized by 1H NMR, IR, and UV/Vis spectroscopy as well as DFT calculations on their model compounds, thus revealing that the self‐aggregation behavior depends on the combination of S chirality. The absolute configurations at the sulfur center can be determined by the exciton‐coupled CD method. The observed self‐association constant for the S–oxo‐tethered dimerization of (S)‐phenylsulfinylporphyrin in toluene is larger than that in dichloromethane, which reflects the difference in dipole moments between the homodimer and the monomer. In cyclic and differential pulse voltammetry, the first oxidation process of the cofacial dimers is split into two reversible steps, which indicates that the initially produced π radical cations are delocalized efficiently between the two porphyrin rings. The present findings demonstrate the potential utility of meso‐sulfinyl groups as promising ligands for investigating the effects of peripheral chirality on the structures and optical and electrochemical properties of metal‐assisted porphyrin self‐assemblies.  相似文献   

15.
Diastereomeric geminate pairs of chiral bis(2‐oxazoline) ruthenium complexes with bipyridyl‐type N‐heteroaromatics, Λ‐ and Δ‐[Ru(L‐ L)2(iPr‐biox)]2+ (iPr‐biox=(4S,4′S)‐4,4′‐diisopropyl‐2,2′‐bis(2‐oxazoline); L‐ L=2,2′‐bipyridyl (bpy) for 1 Λ and 1 Δ, 4,4′‐dimethyl‐2,2′‐bipyridyl (dmbpy) for 2 Λ and 2 Δ, and 1,10‐phenanthroline (phen) for 3 Λ and 3 Δ), were separated as BF4 and PF6 salts and were subjected to the comparative studies of their stereochemical and photochemical characterization. DFT calculations of 1 Λ and 1 Δ electronic configurations for the lowest triplet excited state revealed that their MO‐149 (HOMO) and MO‐150 (lower SOMO) characters are interchanged between them and that the phosphorescence‐emissive states are an admixture of a Ru‐to‐biox charge‐transfer state and an intraligand excited state within the iPr‐biox. Furthermore, photoluminescence properties of the two Λ,Δ‐diastereomeric series are discussed with reference to [Ru(bpy)3]2+.  相似文献   

16.
A series of new α‐diimine nickel(II) catalysts bearing bulky chiral sec‐phenethyl groups have been synthesized and characterized. The molecular structure of representative chiral ligand, bis[N,N′‐(4‐methyl‐2,6‐di‐sec‐phenethylphenyl)imino]‐1,2‐dimethylethane rac‐1c and chiral complexes, {bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dibromidonickel rac‐2a and bis{bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dibromidonickel rac‐2b, were confirmed by X‐ray crystallographic analysis. Complex rac‐2c bearing two chiral sec‐phenethyl groups in the ortho‐aryl position and a methyl group in the para‐aryl position, activated by diethylaluminum chloride (DEAC), showed highly catalytic activity for the polymerization of ethylene [4.12 × 106 g PE (mol Ni.h.bar)?1], and produced highly branched polyethylenes under low ethylene pressure (branching degree: 104, 118 and 126 branches/1000 C at 20, 40 and 60°C, respectively). Chiral 20‐electron bis‐α‐diimine Ni(II) complex rac‐2b also exhibited high activity toward ethylene polymerization [1.71 × 106 g PE (mol Ni · h · bar)?1]. The type and amount of branches of the polyethylenes obtained were determined by 1H and 13C NMR. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
《化学:亚洲杂志》2017,12(6):643-647
A fully conjugated system 4 consisting of two 2‐aza‐21‐carbaporphyrin (NCP) subunits bridged by dipyrrin was synthesized by a highly selective condensation of 3‐pyrrole‐NCP 2 with aryl aldehydes. The free base 4 as well as its silver(III) complex 5 exhibited flexibility of the bridge allowing synergetic binding of AgI, thus leading to a mixed‐valence tetraporphyrinic assembly consisting of eight silver atoms which was characterized both in the solid state and in solution. Binding of chiral acid by 4 and 5 was shown by observation of an induced optical activity of the adducts.  相似文献   

18.
A convenient approach towards the synthesis of orthogonally protected chiral bis‐α‐amino acids (OPBAAs) is described. The key transformations include: (1) a highly stereoselective conjugation (alkylation) of the Schöllkopf bis‐lactim ethers and oxazolidinyl alkyl halides to build a backbone skeleton; and (2) our orthogonal protection strategy. A series of enantiopure OPBAAs bearing a variety of alkyl chain as a spacer; two stereogenic centers; and three protecting groups were prepared as examples. These versatile molecules were applied to the synthesis of biologically interesting di‐ or tri‐peptide analogues, including chiral iE‐meso‐DAP and A‐iE‐meso‐DAP, for the study of Nod1 activation in the innate immune response.  相似文献   

19.
A series of optically active cis‐3 bis‐adducts, such as (R,R,fC)‐ 16 (Scheme 6), was obtained regio‐ and diastereoselectively by Bingel macrocyclization of C60 with bis‐malonates, which contain optically active tethers derived from 1,2‐diols. The absolute configuration of the inherently chiral addition pattern in cis‐3 bis‐adducts had previously been determined by comparison of calculated and experimental circular dichroism (CD) spectra. Full confirmation of these earlier assignments was now obtained by an independent method based on semiempirical AM1 (`Austin Model 1') and OM2 (`Orthogonalization Method 2') calculations combined with 1H‐NMR spectroscopy. It was found computationally that bis‐malonates [CHR(OCOCH2COOEt)]2, which contain (R,R)‐ or (S,S)‐butane‐2,3‐diol derivatives as optically active tethers, preferentially form out‐out cis‐3 bis‐adducts of C60 as a single diastereoisomer in which the alkyl groups R adopt a gauche conformation, while the two glycolic H‐atoms are in an antiperiplanar (ap) and the ester linkages to the fullerene in a gauche relationship (Figs. 2 and 5). In contrast, in the less favorable diastereoisomer, which should not form, the alkyl groups R adopt an ap and the H‐atoms a gauche conformation, while the ester bridges to the fullerene remain, for geometric reasons, locked in a gauche conformation. According to the OM2 calculations, the geometry of the fully staggered tether in the free bis‐malonates closely resembles the conformation of the tether fragment in the bis‐adducts formed. These computational predictions were confirmed experimentally by the measurement of the coupling constant between the vicinal glycolic H‐atoms in the 1H‐NMR spectrum. For (R,R,fC)‐ 16 , 3J(H,H) was determined as 7.9 Hz, in agreement with the ap conformation, and, in combination with the calculations, this allowed assignment of the fC‐configuration to the inherently chiral addition pattern. This conformational analysis was further supported by the regio‐ and diastereoselective synthesis of cis‐3 bis‐adducts from bis‐malonates, including tethers derived from cyclic glycol units with a fixed gauche conformation of the alkyl residues R at the glycolic C‐atoms. Thus, a bis‐malonate of (R,R)‐cyclohexane‐1,2‐diol provided exclusively cis‐3 bis‐adduct (R,R,fC)‐ 20 in 32% yield (Scheme 7). Incorporation of a tether derived from methyl 4,6‐O,O‐benzylidene‐α‐D ‐glucopyranoside into the bis‐malonate and Bingel macrocyclization diastereoselectively produced the cis‐3 stereoisomer (α,D ,fA)‐ 22 (Scheme 8) as the only macrocyclic bis‐adduct. If the geometry of the alkyl groups R at the glycolic C‐atoms of the tether component deviates from a gauche relationship, as in the case of tethers derived from exo cis‐ and trans‐norbornane‐2,3‐diol or from trans‐cyclopentane‐1,2‐diol, hardly any macrocyclic product is formed (Schemes 5 and 9). The absolute configurations of the various optically active cis‐3 bis‐adducts were also assigned by comparison of their CD spectra, which are dominated by the chiroptical contributions of the inherently chiral fullerene chromophore (Figs. 1, 3, and 4). A strong chiral exciton coupling was observed for optically active macrocyclic cis‐3 bis‐adducts of C60 with two appended 4‐(dimethylamino)benzoate ((S,S,fC)‐ 26 ; Fig. 6) or meso‐tetraphenylporphyrin ((R,R,fC)‐ 28 ; Fig. 7) chromophores. Chiral exciton coupling between two fullerene chromophores was observed for the first time in the CD spectrum of the threitol‐bridged bis‐fullerene (R,R)‐ 35 (Fig. 9).  相似文献   

20.
l to d conversion of unactivated α‐amino acids was achieved by solubility‐induced diastereomer transformation (SIDT). Ternary complexes of an α‐amino acid with 3,5‐dichlorosalicylaldehyde and a chiral guanidine (derived from corresponding chiral vicinal diamine) were obtained in good yield as diastereomerically pure imino acid salt complexes and were hydrolysed to obtain enantiopure α‐amino acids. A combination of DFT computation, NMR spectroscopy, and crystal structure provide detailed insight into how two types of strong hydrogen bonds assist in rapid epimerization of the complexes that is essential for SIDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号