首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO thin films with thikness d = 100 nm were deposited onto different substrates such as glass, kapton, and silicon by radio frequency magnetron sputtering. The structural analyses of the films indicate they are polycrystalline and have a wurtzite (hexagonal) structure.The ZnO layer deposited on kapton substrate shows a stronger orientation of the crystallites with (0 0 2) plane parallel to the substrate surface, as compared with the other two samples of ZnO deposited on glass and silicon, respectively.All three layers have nanometer-scale values for roughness, namely 1.7 nm for ZnO/glass, 2.4 nm for ZnO/silicon, and 6.8 nm for ZnO/kapton. The higher value for the ZnO layer deposited on kapton substrate makes this sample suitable for solar cells applications. Transmission spectra of these thin films are strongly influenced by deposition conditions. With our deposition conditions the transparent conducting ZnO layer has a good transmission (78-88%) in VIS and NIR domains. The values of the energy gap calculated from the absorption spectra are 3.23 eV for ZnO sample deposited onto glass substrate and 3.30 eV for the ZnO sample deposited onto kapton polymer foil substrate. The influence of deposition arrangement and oxidation conditions on the structural, morphological, and optical properties of the ZnO films is discussed in the present paper.  相似文献   

2.
在Si(111)衬底上分别预沉积0,0.1,0.5,1 nm厚度的In插入层后,采用等离子辅助分子束外延法制备了纤锌矿结构的InN材料,结合X射线衍射(XRD)、扫描电子显微镜(SEM)、吸收谱及光致发光谱研究了不同厚度的In插入层对外延InN晶体质量和光学特性的影响。XRD和SEM的测试结果表明,在Si衬底上预沉积0.5 nm厚的In插入层有利于改善外延InN材料的形貌,提高材料的晶体质量。吸收谱和光致发光谱测试表明,0.5 nm厚In插入层对应的InN样品吸收边蓝移程度最小,光致发射谱半峰宽最窄,并且有最高的带边辐射复合发光效率。可见,引入适当厚度的InN插入层可以改善Si衬底上外延InN材料的晶体质量和光学特性。  相似文献   

3.
The formation of silver nanoparticles in 60GeO2–20PbO–20Na2O bulk glass doped with 0.15 wt% of Ag has been studied by optical methods in the near ultraviolet-to-near infrared and mid-infrared ranges. A clear optical absorption band, which grows when increasing the annealing temperature, is observed around 460 nm, as a consequence of the surface plasmon resonance in the Ag nanoparticles. From the simultaneous analysis of optical transmittance and spectroscopic ellipsometry spectra in the near ultraviolet-to-near infrared range, it is demonstrated that the nanoparticles are surprisingly formed only in a thin layer (some tens of nm thick) underneath the sample surfaces. The potential of such a simultaneous optical analysis for determining the localization of the nanoparticles in glasses of any nature is underlined. Based on the results of a complementary mid-infrared spectroscopy characterization, the processes involved in silver migration to the surfaces and further aggregation to form nanoparticles are discussed.  相似文献   

4.
We discuss an ex-situ monitoring technique based on glancing-angle infrared-absorption used to determine small amounts of erbium antimonide (ErSb) deposited on an indium antimonide (InSb) layer epitaxially grown on an InSb (100) substrate by low pressure metal organic chemical vapor deposition (MOCVD). Infrared absorption from the indium–hydrogen (InH) stretching mode at 1754.5 cm? 1 associated with a top most surface of an epitaxial InSb layer was used to compare varying levels of surface coverage with ErSb. Among four samples of varying coverage of ErSb deposition (7.2 to 21.5 monolayers), detected infrared absorption peaks distinct to InH weakened as ErSb surface coverage increased. In the early stage of ErSb deposition, our study suggests that outermost indium atoms in the InSb buffer layer are replaced by Er resulting in increase in absorption associated with the InH mode. Using this simple ex-situ technique, we show that it is possible to calibrate the amount of ErSb deposited atop each individual InSb substrate for depositions of few to tens of monolayers.  相似文献   

5.
It has been demonstrated that self-organized InGaN nanodots can be vertically grown by utilizing metal-organic chemical vapor deposition epitaxy (MOCVD). We report the investigation of the characteristics of InGaN with various indium contents and the fabrication of self-organized InGaN nanodots will also be discussed. Using a temperature ramping growth method, self-organized InGaN nanodots were formed vertically protruding above the sample. It was found that typical height of these nanodots is around 45 nm with an average width of 5 nm. It was also found that the local density of the vertically grown self-organized InGaN nanodots could reach 8.2 × 1012 cm−2. These self-organized InGaN nanodots will result in a red shift in PL spectrum indicating that In droplets act as an indium source to form an InGaN intermediate layer near the heterointerface.  相似文献   

6.
Modern quantum chemical methods can be used to investigate many properties of novel molecules and materials with predictive power. We have carried out accurate quantum chemical calculations with cluster models to investigate chemical reactions on semiconductor surfaces. The structure–property relationships that emerge from these studies are illustrated with particular emphasis on silicon as well as indium phosphide surface chemistry. Some new strategies that we have developed to provide a proper balance between covalent and dative bonding in compound semiconductors are discussed. Embedded cluster models have been used in some cases to include the effects of the surroundings on the active region. The structural and mechanistic understanding that emerges from our studies is illustrated by selected results on atomic layer deposition of Al2O3 on silicon and hydrogenation of P-rich and In-rich indium phosphide surfaces.  相似文献   

7.
For the first time, zinc oxide epitaxial films on silicon were grown by the method of atomic layer deposition at a temperature T = 250°C. In order to avoid a chemical reaction between silicon and zinc oxide (at the growth temperature, the rate constant of the reaction is of the order of 1022), a high-quality silicon carbide buffer layer with a thickness of ~50 nm was preliminarily synthesized by the chemical substitution of atoms on the silicon surface. The zinc oxide films were grown on n- and p-type Si(100) wafers. The ellipsometric, Raman, electron diffraction, and trace element analyses showed that the ZnO films are epitaxial.  相似文献   

8.
Monolayer zirconia physical vapor deposition (PVD) and sol–gel films on K9 glass substrates were prepared by electron beam evaporation and spin coating methods, respectively. The laser-induced damage threshold (LIDT) of each film was measured. Properties of the films were analyzed using Stanford photo-thermal solutions (SPTS), ellipsometry, atomic force microscopy (AFM) and optical microscopy to study the damage mechanism of films under laser irradiation. The experimental results showed that, compared with the monolayer zirconia sol–gel film, the monolayer zirconia PVD film had larger absorption and smaller porous ratio, and that it had smaller LIDT. The different damage morphologies of films were influenced by their different absorption and microstructure characteristics. The zirconia sol–gel film is more suitable for applications involving high-power lasers.  相似文献   

9.

The intercalation of iron under a graphene monolayer grown on 4H-SiC(0001) is studied. The experiments have been carried out in situ under conditions of ultrahigh vacuum by low-energy electron diffraction, high-energy-resolution photoelectron spectroscopy using synchrotron radiation, and near carbon K-edge X-ray absorption spectroscopy. The deposited iron film thicknesses have been varied within 0.1–2 nm and the sample temperatures from room temperature to 700°C. It is shown that the intercalation process begins at temperatures higher than ~350°C. In this case, it is found that intercalated iron atoms are localized not only between graphene and a buffer layer coating SiC, but also under the buffer layer itself. The optimal conditions of the intercalation are realized in the range 400–500°C, because, at higher temperatures, the system becomes unstable due to the chemical interaction of the intercalated iron with silicon carbide. The inertness of the intercalated films to action of oxygen is demonstrated.

  相似文献   

10.
用低压等离子体增强化学汽相沉积法和氮化硅中间过渡层的方法,在硅片和玻璃上,制备了立方氮化碳薄膜.用光电子能谱测试了其成分和结合能,薄膜含氮量为42.96%.C1s和N1s的结合能分别为285.01和398.60eV.透射电子显微镜研究表明,制备的氮化碳属于体心立方结构,根据衍射花样,计算的晶格常量a为0.536nm,这与理论预言的结果a为0.53973nm很接近.随着沉积的时间增长,还观测到了氮化碳薄膜的菊池花样.在玻璃上沉积的氮化碳薄膜在可见光和近红外区域是透明的,在400nm处有光吸收. 关键词:  相似文献   

11.
A 300-nm-thick cadmium sulfide epitaxial layer on silicon was grown for the first time. The grown was performed by the method of evaporation and condensation in a quasi-closed volume at a substrate temperature of 650°C and a growth time of 4 s. In order to avoid a chemical reaction between silicon and cadmium sulfide (at this temperature, the rate constant of the reaction is ~103) and to prevent etching of silicon by sulfur, a high-quality silicon carbide buffer layer ~100 nm thick was preliminarily synthesized by the substitution of atoms on the silicon surface. The ellipsometric, Raman, electron diffraction, and trace element analyses showed a high structural perfection of the CdS layer and the absence of a polycrystalline phase.  相似文献   

12.
In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm−1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.  相似文献   

13.
A new route to grow an ensemble of indium phosphide single-crystal semiconductor nanowires is described. Unlike conventional epitaxial growth of single-crystal semiconductor films, the proposed route for growing semiconductor nanowires does not require a single-crystal semiconductor substrate. In the proposed route, instead of using single-crystal semiconductor substrates that are characterized by their long-range atomic ordering, a template layer that possesses short-range atomic ordering prepared on a non-single-crystal substrate is employed. On the template layer, epitaxial information associated with its short-range atomic ordering is available within an area that is comparable to that of a nanowire root. Thus the template layer locally provides epitaxial information required for the growth of semiconductor nanowires. In the particular demonstration described in this paper, hydrogenated silicon was used as a template layer for epitaxial growth of indium phosphide nanowires. The indium phosphide nanowires grown on the hydrogenerated silicon template layer were found to be single crystal and optically active. Simple photoconductors and pin-diodes were fabricated and tested with the view towards various optoelectronic device applications where group III–V compound semiconductors are functionally integrated onto non-single-crystal platforms.  相似文献   

14.
Thin film structures consisting of nano-crystalline and amorphous silicon layers deposited on glass by plasma enhanced chemical vapour deposition have been studied by optical spectroscopy methods (transmittance, photo-thermal deflection spectroscopy and photo-current spectroscopy) while structure was examined by Raman spectroscopy. The nano-crystalline layers were grown on the same amorphous layers, using different radio-frequency (RF) discharge powers, leading to different structural and optical properties. The energy dependence of the absorption coefficient above the band gap agrees well to the bimodal size distribution of crystals and crystal fraction estimated by Raman spectroscopy. For energies below the band gap, the comparison of the absorption of the bi-layer systems with respect to single amorphous layer reveals that the samples produced at higher RF discharge present a higher disorder degree (Urbach edge increases) and higher number of structural defects (absorption related to the defects increases).  相似文献   

15.
InGaN/GaN multiple-quantum-well (MQW) structure with Si-doped InGaN electron-emitting layer (EEL) was grown by metal–organic chemical vapor deposition and their characteristics were evaluated by photoluminescence (PL) measurements. In a typical structure, a low indium composition and wide potential well was used to be an EEL, and a six-fold MQW was used to be an active layer where the injected carriers recombine. By comparing the PL spectral characteristics of the MQW samples, the PL intensity of MQW with EEL is about 10 times higher than that of typical MQW. Experimental results indicate that the high electron capture rate of the MQW active region can be achieved by employing EEL.  相似文献   

16.

An epitaxial 1–3-μm-thick cadmium telluride film has been grown on silicon with a buffer silicon carbide layer using the method of open thermal evaporation and condensation in vacuum for the first time. The optimum substrate temperature was 500°C at an evaporator temperature of 580°C, and the growth time was 4 s. In order to provide more qualitative growth of cadmium telluride, a high-quality ~100-nm-thick buffer silicon carbide layer was previously synthesized on the silicon surface using the method of topochemical substitution of atoms. The ellipsometric, Raman, X-ray diffraction, and electron-diffraction analyses showed a high structural perfection of the CdTe layer in the absence of a polycrystalline phase.

  相似文献   

17.
We study the respective influence of haze and free carrier absorption (FCA) of transparent front electrodes on the photogenerated current of micromorph thin film silicon solar cells. To decouple the haze and FCA we develop bi‐layer front electrodes: a flat indium tin oxide layer assures conduction and allows us to tune FCA while the haze is adjusted by varying the thickness of a highly transparent rough ZnO layer. We show how a minimum amount of FCA leads only to a few percents absorption for a single light path but to a strong reduction of the cell current in the infrared part of the spectrum. Conversely, a current enhancement is shown with increasing front electrode haze up to a saturation of the current gain. This saturation correlates remarkably well with the haze of the front electrode calculated in silicon. This allows us to clarify the requirements for the front electrodes of micromorph cells. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Si/ SiO2superlattices were fabricated by low-pressure chemical vapour deposition. Superlattices of 75–150 nm layer pair thicknesses and having 1–8 layer pairs were investigated in order to evaluate their surface structure and electroluminescent properties. Atomic force microscopy (AFM) studies were performed in order to investigate the surface morphology of a thin SiO2layer and to evaluate the sizes of polysilicon nanocrystals grown onto the top of it. The current–voltage characteristics and the electroluminescence spectra are also shown. We have observed a blueshift of over 200 nm in the electroluminescence peak wavelength by increasing the driving current. The change in the direction of the driving current through a sample changes the peak wavelength from the yellow to red region. In some samples, we could detect an exponential increase in light intensity in current densities near 100 mA per square millimeter. The increase in intensity is combined with a very prominent spectral narrowing of the electroluminescence spectra. The half width of this spectral peak was less than 5 nm. It is possible that we have observed for the first time a laser type of mechanism in semiconductor structures made solely of silicon and silicon dioxide.  相似文献   

19.
The effects of preheating laser power and pulse laser energy on the size and crystallinity of laterally grown grains by dual-laser crystallization of amorphous silicon (a-Si) films on borosilicate glass substrates were investigated. Plasma-enhanced chemical vapor deposition was adopted for the deposition of the a-Si films in order to reduce the process temperature and thus the diffusion of metal impurities from the glass substrate to the deposited a-Si films. It was found that the preheating laser power is critical in enhancing grain size, whereas the pulse laser energy is closely related to crystal quality. It is demonstrated that by properly adjusting the process conditions, laterally grown grains of 50-μm size could be obtained.  相似文献   

20.
Two-tier structured silicon with micron/nanometre scale features is fabricated by simple wet chemical etching. The structured silicon sample exhibits dramatically enhanced absorption from ultraviolet to near-infrared wavelength (250–2500?nm). Absorption is enhanced to near unity at wavelengths shorter than 1100?nm caused by the extremely suppressed reflection from the two-tier structured surface. Within the wavelength range from 1100 to 2500?nm, the sample exhibits a strong absorbance of 69.6% at 1100?nm and an average of 30% at longer wavelengths. By analyzing XPS spectra from the surface of the two-tier structured sample, we attribute this near-infrared absorption to band structure and morphological changes presented in the textured layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号