首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In this paper we investigate POD discretizations of abstract linear–quadratic optimal control problems with control constraints. We apply the discrete technique developed by Hinze (Comput. Optim. Appl. 30:45–61, 2005) and prove error estimates for the corresponding discrete controls, where we combine error estimates for the state and the adjoint system from Kunisch and Volkwein (Numer. Math. 90:117–148, 2001; SIAM J. Numer. Anal. 40:492–515, 2002). Finally, we present numerical examples that illustrate the theoretical results.  相似文献   

2.
We provide a new semilocal convergence analysis of the Gauss–Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982).  相似文献   

3.
We provide a semilocal convergence analysis for a certain class of secant-like methods considered also in Argyros (J Math Anal Appl 298:374–397, 2004, 2007), Potra (Libertas Mathematica 5:71–84, 1985), in order to approximate a locally unique solution of an equation in a Banach space. Using a combination of Lipschitz and center-Lipschitz conditions for the computation of the upper bounds on the inverses of the linear operators involved, instead of only Lipschitz conditions (Potra, Libertas Mathematica 5:71–84, 1985), we provide an analysis with the following advantages over the work in Potra (Libertas Mathematica 5:71–84, 1985) which improved the works in Bosarge and Falb (J Optim Theory Appl 4:156–166, 1969, Numer Math 14:264–286, 1970), Dennis (SIAM J Numer Anal 6(3):493–507, 1969, 1971), Kornstaedt (1975), Larsonen (Ann Acad Sci Fenn, A 450:1–10, 1969), Potra (L’Analyse Numérique et la Théorie de l’Approximation 8(2):203–214, 1979, Aplikace Mathematiky 26:111–120, 1981, 1982, Libertas Mathematica 5:71–84, 1985), Potra and Pták (Math Scand 46:236–250, 1980, Numer Func Anal Optim 2(1):107–120, 1980), Schmidt (Period Math Hung 9(3):241–247, 1978), Schmidt and Schwetlick (Computing 3:215–226, 1968), Traub (1964), Wolfe (Numer Math 31:153–174, 1978): larger convergence domain; weaker sufficient convergence conditions, finer error bounds on the distances involved, and a more precise information on the location of the solution. Numerical examples further validating the results are also provided.  相似文献   

4.
Conjugate gradient methods are appealing for large scale nonlinear optimization problems, because they avoid the storage of matrices. Recently, seeking fast convergence of these methods, Dai and Liao (Appl. Math. Optim. 43:87–101, 2001) proposed a conjugate gradient method based on the secant condition of quasi-Newton methods, and later Yabe and Takano (Comput. Optim. Appl. 28:203–225, 2004) proposed another conjugate gradient method based on the modified secant condition. In this paper, we make use of a multi-step secant condition given by Ford and Moghrabi (Optim. Methods Softw. 2:357–370, 1993; J. Comput. Appl. Math. 50:305–323, 1994) and propose two new conjugate gradient methods based on this condition. The methods are shown to be globally convergent under certain assumptions. Numerical results are reported.  相似文献   

5.
In this paper, a priori error estimates for space–time finite element discretizations of optimal control problems governed by semilinear parabolic PDEs and subject to pointwise control constraints are derived. We extend the approach from Meidner and Vexler (SIAM Control Optim 47(3):1150–1177, 2008; SIAM Control Optim 47(3):1301–1329, 2008) where linear-quadratic problems have been considered, discretizing the state equation by usual conforming finite elements in space and a discontinuous Galerkin method in time. Error estimates for controls discretized by piecewise constant functions in time and cellwise constant functions in space are derived in detail and we explain how error estimate for further discretization approaches, e.g., cellwise linear discretization in space, the postprocessing approach from Meyer and R?sch (SIAM J Control Optim 43:970–985, 2004), and the variationally discrete approach from Hinze (J Comput Optim Appl 30:45–63, 2005) can be obtained. In addition, we derive an estimate for a setting with finitely many time-dependent controls.  相似文献   

6.
Deckelnick and Dziuk (Math. Comput. 78(266):645–671, 2009) proved a stability bound for a continuous-in-time semidiscrete parametric finite element approximation of the elastic flow of closed curves in \mathbbRd, d 3 2{\mathbb{R}^d, d\geq2} . We extend these ideas in considering an alternative finite element approximation of the same flow that retains some of the features of the formulations in Barrett et al. (J Comput Phys 222(1): 441–462, 2007; SIAM J Sci Comput 31(1):225–253, 2008; IMA J Numer Anal 30(1):4–60, 2010), in particular an equidistribution mesh property. For this new approximation, we obtain also a stability bound for a continuous-in-time semidiscrete scheme. Apart from the isotropic situation, we also consider the case of an anisotropic elastic energy. In addition to the evolution of closed curves, we also consider the isotropic and anisotropic elastic flow of a single open curve in the plane and in higher codimension that satisfies various boundary conditions.  相似文献   

7.
We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study  相似文献   

8.
The second-order cone complementarity problem (SOCCP) is an important class of problems containing a lot of optimization problems. The SOCCP can be transformed into a system of nonsmooth equations. To solve this nonsmooth system, smoothing techniques are often used. Fukushima, Luo and Tseng (SIAM J. Optim. 12:436–460, 2001) studied concrete theories and properties of smoothing functions for the SOCCP. Recently, a practical computational method using the smoothed natural residual function to solve the SOCCP was given by Chen, Sun and Sun (Comput. Optim. Appl. 25:39–56, 2003). In the present paper, we propose an algorithm to solve the SOCCP by using the smoothed Fischer-Burmeister function. Some preliminary numerical results are given.  相似文献   

9.
In this paper, we study the semilocal convergence for a fifth-order method for solving nonlinear equations in Banach spaces. The semilocal convergence of this method is established by using recurrence relations. We prove an existence-uniqueness theorem and give a priori error bounds which demonstrates the R-order of the method. As compared with the Jarratt method in Hernández and Salanova (Southwest J Pure Appl Math 1:29–40, 1999) and the Multi-super-Halley method in Wang et al. (Numer Algorithms 56:497–516, 2011), the differentiability conditions of the convergence of the method in this paper are mild and the R-order is improved. Finally, we give some numerical applications to demonstrate our approach.  相似文献   

10.
The purpose of this paper is to study the weak convergence problems of the irnplicity iteration process for Lipschitzian pseudocontraction semigroups in general Banach spaces. The results presented in this paper extend and improve the corresponding results of Zhou [Nonlinear Anal., 68, 2977-2983 (2008)], Chen, et ah [J. Math. Anal. Appl., 314, 701 709 (2006)], Xu and Ori [Numer. Funct. Anal. Optim, 22, 767-773 (2001)] and Osilike [J. Math. Anal. Appl., 294, 73-81 (2004)]. Keywords  相似文献   

11.
We approximate a locally unique solution of an equation in Banach space using the Newton–Kantorovich method. Motivated by our earlier works (see references [2–7] in the references list), optimization consideration, and the elegant studies by Cianciaruso with DePascale in (Numer. Funct. Anal. Optim. 27(5–6):529–538, 2006), and Cianciaruso in (Nonlinear Funct. Anal. Appl., 2009, to appear), we provide (by using more precise error estimates on the distances involved): finer error bounds; an at least as precise information on the location of the solution, and a larger convergence domain than in (Numer. Funct. Anal. Optim. 27(5–6):529–538, 2006). Finally, we provide numerical examples where our results can apply to solve equations, but earlier ones can not (see references [8–19]).  相似文献   

12.
The existence of solution for the 2D-Keller-Segel system in the subcritical case, i.e. when the initial mass is less than 8π, is reproved. Instead of using the entropy in the free energy and free energy dissipation, which was used in the proofs (Blanchet et al. in SIAM J. Numer. Anal. 46:691–721, 2008; Electron. J. Differ. Equ. Conf. 44:32, 2006 (electronic)), the potential energy term is fully utilized by adapting Delort’s theory on 2D incompressible Euler equation (Delort in J. Am. Math. Soc. 4:553–386, 1991).  相似文献   

13.
We extend the applicability of the Gauss–Newton method for solving singular systems of equations under the notions of average Lipschitz–type conditions introduced recently in Li et al. (J Complex 26(3):268–295, 2010). Using our idea of recurrent functions, we provide a tighter local as well as semilocal convergence analysis for the Gauss–Newton method than in Li et al. (J Complex 26(3):268–295, 2010) who recently extended and improved earlier results (Hu et al. J Comput Appl Math 219:110–122, 2008; Li et al. Comput Math Appl 47:1057–1067, 2004; Wang Math Comput 68(255):169–186, 1999). We also note that our results are obtained under weaker or the same hypotheses as in Li et al. (J Complex 26(3):268–295, 2010). Applications to some special cases of Kantorovich–type conditions are also provided in this study.  相似文献   

14.
We introduce an implicit iteration scheme with a perturbed mapping for finding a common element of the set of solutions of an equilibrium problem and the set of common fixed points of finitely many nonexpansive mappings in a Hilbert space. Then, we establish some convergence theorems for this implicit iteration scheme which are connected with results by Xu and Ori (Numer. Funct. Analysis Optim. 22:767–772, 2001), Zeng and Yao (Nonlinear Analysis, Theory, Methods Appl. 64:2507–2515, 2006) and Takahashi and Takahashi (J. Math. Analysis Appl. 331:506–515, 2007). In particular, necessary and sufficient conditions for strong convergence of this implicit iteration scheme are obtained. In this research, the first author was partially supported by the National Science Foundation China (10771141), Ph.D. Program Foundation of Ministry of Education of China (20070270004), and Science and Technology Commision of Shanghai Municipality Grant (075105118).  相似文献   

15.
In this paper, we consider a one-dimensional dam-river system studied by Chentouf and Wang (SIAM J. Control Optim. 47: 2275–2302, 2008). Then, using the frequency multiplier method, we provide a simple and alternative proof of stabilization and regulation results obtained in the work cited above. Moreover, we relax the conditions on the feedback gains involved in the feedback law and give a partial answer to the open problem left by the authors Chentouf and Wang (J. Optim. Theory Appl. 134: 223–239, 2007 and SIAM J. Control Optim. 47: 2275–2302, 2008) concerning the tuning of the gains.  相似文献   

16.
Two modified Dai-Yuan nonlinear conjugate gradient methods   总被引:1,自引:0,他引:1  
In this paper, we propose two modified versions of the Dai-Yuan (DY) nonlinear conjugate gradient method. One is based on the MBFGS method (Li and Fukushima, J Comput Appl Math 129:15–35, 2001) and inherits all nice properties of the DY method. Moreover, this method converges globally for nonconvex functions even if the standard Armijo line search is used. The other is based on the ideas of Wei et al. (Appl Math Comput 183:1341–1350, 2006), Zhang et al. (Numer Math 104:561–572, 2006) and possesses good performance of the Hestenes-Stiefel method. Numerical results are also reported. This work was supported by the NSF foundation (10701018) of China.  相似文献   

17.
Given a function f defined on a bounded domain Ω⊂ℝ2 and a number N>0, we study the properties of the triangulation TN\mathcal{T}_{N} that minimizes the distance between f and its interpolation on the associated finite element space, over all triangulations of at most N elements. The error is studied in the norm X=L p for 1≤p≤∞, and we consider Lagrange finite elements of arbitrary polynomial degree m−1. We establish sharp asymptotic error estimates as N→+∞ when the optimal anisotropic triangulation is used, recovering the results on piecewise linear interpolation (Babenko et al. in East J. Approx. 12(1), 71–101, 2006; Babenko, submitted; Chen et al. in Math. Comput. 76, 179–204, 2007) and improving the results on higher degree interpolation (Cao in SIAM J. Numer. Anal. 45(6), 2368–2391, 2007, SIAM J. Sci. Comput. 29, 756–781, 2007, Math. Comput. 77, 265–286, 2008). These estimates involve invariant polynomials applied to the m-th order derivatives of f. In addition, our analysis also provides practical strategies for designing meshes such that the interpolation error satisfies the optimal estimate up to a fixed multiplicative constant. We partially extend our results to higher dimensions for finite elements on simplicial partitions of a domain Ω⊂ℝ d .  相似文献   

18.
We introduce a new iterative method in order to approximate a locally unique solution of variational inclusions in Banach spaces. The method uses only divided differences operators of order one. An existence–convergence theorem and a radius of convergence are given under some conditions on divided difference operator and Lipschitz-like continuity property of set-valued mappings. Our method extends the recent work related to the resolution of nonlinear equation in Argyros (J Math Anal Appl 332:97–108, 2007) and has the following advantages: faster convergence to the solution than all the previous known ones in Argyros and Hilout (Appl Math Comput, 2008 in press), Hilout (J Math Anal Appl 339:53–761, 2008, Positivity 10:673–700, 2006), and we do not need to evaluate any Fréchet derivative. We provide also an improvement of the ratio of our algorithm under some center-conditions and less computational cost. Numerical examples are also provided.   相似文献   

19.
In Han and Shen (SIAM J. Math. Anal. 38:530–556, 2006), a family of univariate short support Riesz wavelets was constructed from uniform B-splines. A bivariate spline Riesz wavelet basis from the Loop scheme was derived in Han and Shen (J. Fourier Anal. Appl. 11:615–637, 2005). Motivated by these two papers, we develop in this article a general theory and a construction method to derive small support Riesz wavelets in low dimensions from refinable functions. In particular, we obtain small support spline Riesz wavelets from bivariate and trivariate box splines. Small support Riesz wavelets are desirable for developing efficient algorithms in various applications. For example, the short support Riesz wavelets from Han and Shen (SIAM J. Math. Anal. 38:530–556, 2006) were used in a surface fitting algorithm of Johnson et al. (J. Approx. Theory 159:197–223, 2009), and the Riesz wavelet basis from the Loop scheme was used in a very efficient geometric mesh compression algorithm in Khodakovsky et al. (Proceedings of SIGGRAPH, 2000).  相似文献   

20.
In this paper, we present a measure of distance in a second-order cone based on a class of continuously differentiable strictly convex functions on ℝ++. Since the distance function has some favorable properties similar to those of the D-function (Censor and Zenios in J. Optim. Theory Appl. 73:451–464 [1992]), we refer to it as a quasi D-function. Then, a proximal-like algorithm using the quasi D-function is proposed and applied to the second-cone programming problem, which is to minimize a closed proper convex function with general second-order cone constraints. Like the proximal point algorithm using the D-function (Censor and Zenios in J. Optim. Theory Appl. 73:451–464 [1992]; Chen and Teboulle in SIAM J. Optim. 3:538–543 [1993]), under some mild assumptions we establish the global convergence of the algorithm expressed in terms of function values; we show that the sequence generated by the proposed algorithm is bounded and that every accumulation point is a solution to the considered problem. Research of Shaohua Pan was partially supported by the Doctoral Starting-up Foundation (B13B6050640) of GuangDong Province. Jein-Shan Chen is a member of the Mathematics Division, National Center for Theoretical Sciences, Taipei Office. The author’s work was partially supported by National Science Council of Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号