首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contributions to the Chemistry of Phosphorus. 129. Synthesis and Properties of the Phospha-germa-cyclobutanes (t-BuP)2(GePh2)2 and (t-BuP)3GePh2 The phospha-germa-cyclobutanes 1,2-di-tert-butyl-3,3,4,4-tetraphenyl-1,2-diphospha-3,4-digerma-cyclob utane, (t-BuP)2(GePh2)2 ( 1 ), and 1,2,3-tri-tert-butyl-4,4-diphenyl-1,2,3-tri-phospha-4-germa-cyclobutan e, (t-BuP)3GePh2 ( 2 ), are obtained as main-products of the cyclocondensation of K(t-Bu)P? P(t-Bu)K with Ph2GeCl2 under certain reaction conditions. 1 and 2 could be isolated in the pure state and were clearly characterized as the first four-membered P2Ge2 and P3Ge heterocycles, respectively.  相似文献   

2.
Contributions to the Chemistry of Phosphorus. 123. Synthesis and Properties of the Diphosphagermiranes (t-BuP)2GePh2 and (t-BuP)2GeEt2 The first three-membered P2Ge heterocycles, 1,2-di-tert-butyl-3, 3-diphenyl-1, 2, 3-diphosphagermirane, (t-BuP)2GePh2 (1) , and 1, 2-di-tert-butyl-3, 3-diethyl-1, 2, 3-diphosphagermirane, (t-BuP)2GeEt2 (2) , were synthesized by [2+1] cyclocondensation reactions of K(t-Bu)P—P(t-Bu)K with diphenylgermanium dichloride and diethylgermanium dichloride, respectively. The four-, five-, and six-membered cyclogermaphosphanes (t-BuP)2(GePh2)2 (3) , (t-BuP)3GeR2 ( 6 R = Ph; 7 R = Et), (t-BuP)4GePh2 (5) and (t-BuP)4(GePh2)2 (4) as well as (t-BuP)4 are formed as by-products. The diphosphagermiranes 1 and 2 could be isolated in 93 and 100% purity, respectively, and were unambiguously characterized as compounds with a cyclic P2Ge skeleton. The 31P-NMR parameters of the cyclogermaphosphanes 3—7 are reported.  相似文献   

3.
Structural Chemistry of Phosphorus-containing Chains and Rings. 2. Crystal and Molecular Structure of the Diphosphaborirane (t-BuP)2BNEt2 The three-membered P2B-heterocycles 1,2-di-tert-butyl-3-diethylamino-1,2,3-diphosphaborirane, (t-BuP)2BNEt2, crystallizes triclinic in the space group P1 with a = 935.5 pm, b = 985.4 pm, c = 987.4 pm,α = 81.55°, β = 89.40°, γ =69.07°, and Z = 2 formula units. The main structural feature is a short B? N-bond length (138.2 pm) inside a plane P2BN-group. The endocyclic bond angles are 54.0° on phosphorus and 72.0° on boron. The (average) bond lengths are P? P = 222.5 pm, P? C = 189.5 pm, P? B = 189.3 pm, B? N = 138.2 pm, N? C = 147.2 pm, C? C = 152.6 pm, and C? H = 98 pm. The geometry of the substituents ethyl and tert-butyl is quite normal.  相似文献   

4.
Structural Chemistry of Phosphorus-containing Chains and Rings. 1. Crystal Structure of the Diphosphasilirane (t-BuP)2SiPh2 The three-membered P2Si-heterocycle 1, 2-di-tert-butyl-3, 3-diphenyl-1, 2, 3-diphosphasilirane (t-BuP)2SiPh2 crystallizes monoclinic in the space group P21 with a = 1041.2 pm, b = 882.3 pm, c = 1158.1 pm, β = 91.33° and Z = 2 formula units. A special structural feature is the regular triangle built up by two P and one Si. Therefore the endocyclic bond angle at Si is as low as 60°. The average bond lengths are P? P = 222.6 pm, P? Si = 222.5 pm, P? C = 190.8 pm, Si? C = 186.6 pm, (C? C )ph = 139.0 pm, ( C? C )t-Bu = 151.7 pm. The geometry of the substituents phenyl and tert-butyl is quite normal, the last ones are slightly disordered.  相似文献   

5.
Contributions to the Chemistry of Phosphorus. 144. Synthesis and Properties of the Hexaphospha-3-germaspiro[2.4]heptane (t-BuP)2Ge(t-BuP)4 The cyclocondensation of K(t-Bu)P? P(t-Bu)K with germanium tetrachloride in the molar ratio of 2:1 yields the novel spirocyclic compound 1,2,4,5,6,7-hexa-tert-butyl-1,2,4,5,6,7-hexaphospha-3-germaspiro[2.4]heptane, (t-BuP)2Ge(t-BuP)4 ( 1 ). Besides considerable amounts of (t-BuP)4 are formed and occasionally some (t-BuP)3 can be found. 1 could be isolated in the pure state and has been NMR-spectroscopically characterized as a spirocyclic compound with a P2GeP4 skeleton.  相似文献   

6.
Contributions to the Chemistry of Phosphorus. 142. P6(t-Bu)5H – the First Cyclotetraphosphane with a P2 Side Chain The thermolysis of 1, 2-di-tert-butyldiphosphane, H(t-Bu)P? P(t-Bu)H, leads to formation of the hitherto unknown hexaphosphane P6(t-Bu)5H ( 1 ). In the first instance the iso-P5H5 derivative P5(t-Bu)4H [3] is formed, which reacts further with H2(t-BuP)2 or H2(t-BuP)3 yielding 1 . Compound 1 has been isolated in the pure state and structurally characterized as 1-(1,2-di-tert-butyldiphosphino)-2, 3, 4-tri-tert-butyl-cyclotetraphosphane, i. e. as a four-membered ring compound with a P2 side chain. Due to the chirality of the P atoms in the side chain, 1 exists as a mixture of two configurational isomers, the threo-and the erythro-form.  相似文献   

7.
Contributions to the Chemistry of Phosphorus. 224. On the Thermolysis of 1,2-Di-tert-butyldiphosphane, 1,2,3-Tri-tert-butyltriphosphane, and Tetra-tert-butylcyclotetraphosphane On disproportionation of 1,2-di-tert-butyldiphosphane, H(t-Bu)P? P(t-Bu)H (1) , 1,2,3-tri-tert-butyltriphosphane, H2(t-BuP)3 (2) , is formed which reacts further at temperatures above 100°C to give 1-(tert-butylphosphino)-2,3,4-tri-tert-butylcyclotetraphosphan, P5(t-Bu)4H (4) . Compound 4 reacts with 1 or 2 with lengthening of the P-sidechain to furnish the corresponding 1-(1,2-di-tert-butyldiphosphino)-2,3,4-tri-tert-butylcyclotetraphosphane, P6(t-Bu)5H (5) . At temperatures above 170°C, 5 disproportionates into the tetra-tert-butylcyclotetraphosphane, (t-BuP)4 (3) which is stable up to about 200°C, and the bicyclo[3.1.0]hexaphosphane P6(t-Bu)4 from which the polycyclophosphanes P9(t-Bu)3 and P8(t-Bu)6 arise during the further course of the thermolysis. These products are finally converted through even more phosphorus-rich and more highly condensed t-butylcyclophosphanes into elemental phosphorus. In each reaction step, varying amounts of the monophosphane derivatives t-BuPH2, (t-Bu)2PH, and (t-Bu)3P are formed. The proposed course of the reaction is further substantiated by the pyrolysis products of pure 2 and 3 .  相似文献   

8.
Contributions to the Chemistry of Phosphorus. 138. P5(t-Bu)4H — the First Derivative of iso-P5H5 The thermolysis of 1,2-di-tert-butyldiphosphane, H(t-Bu)P? P(t-Bu)H, yields under suitable conditions the compound P5(t-Bu)4H ( 1 ) as the main product. Besides, the tert-butylphosphanes t-BuPH2, P6(t-Bu)5H ( 2 ), H2(t-BuP)3, and (t-BuP)4 are formed. 1 has been isolated in the pure state and structurally characterized as 1-(tert-butylphosphino)-2,3,4-tri-tert-butyl-cyclotetraphosphane. Hence, compound 1 is a derivative of iso-P5H5 with a branched phosphorus skeleton built up by a four-membered ring and a phosphorus side chain.  相似文献   

9.
Contributions to the Chemistry of Phosphorus. 101 Synthesis and Properties of Diphosphaboriranes (t-BuP)2BNR2 and (t-BuP)2BNR1R2 The reaction of K(t-Bu)P? P(t-Bu)K with diorganylaminodichloroboranes under suitable conditions leads to the new 1,2-di-tert-butyl-3-diorganylamino-1,2,3-diphosphaboriranes (-1,2-diphospha-3-boracyclopropanes) (t-BuP)2BNR2 ( 2 , 7 ) and (t-BuP)2BNR1R2 ( 3 — 6 ), respectively. The P2B three-membered heterocycles 2 — 5 can be isolated in good yields. They are relatively stable against dimerization to the corresponding phosphorus boron six-membered ring compounds with opposite boron atoms. The rate of dimerization depends on steric and electronic influences of the substituents at the three-membered ring. All NMR spectroscopic results are only consistent with a structure in which the B and N atoms show planar coordination and are connected by a partial double bond.  相似文献   

10.
Structural Chemistry of Phosphorus Containing Chains and Rings. 11. Crystal and Molecular Structures of the Two Stereoisomers of Tetraphospha-silaspiro[2.2]pentane (PBut)2Si(PBut)2 The spirocyclic compound 1,2,4,5-tetra-tert-butyl-1,2,4,5-tetraphospha-3-silaspiro[2.2]pentane exists in tow diastereomers of point symmetry 4 and 2. The isomer with symmetry 4 even in the solid crystallizes tetragonally in I41/a with a = 1247.0, c = 1505.5 pm and Z = 4. The isomer of fairly exact symmetry 2 crystallizes triclinically in P1 with a = 612.8, b = 996.3, c = 1017.2 pm, α = 75.63, β = 72.38, γ = 88.71° and Z = 1. In this disordered structure the surroundings of Si is slightly distorted due to the influence of the substituents. The (average) bond lengths are (4 , 2): d(Si? P) = 220.09(9), 221.5(5); d(P? P) = 225.5(2), 224.2(5); d(P? C) = 189.4(3), 190(2); d(C? C) = 151.4(4), 152(3) pm. The geometry of the substituents in both isomers is quite normal.  相似文献   

11.
Contributions to the Chemistry of Phosphorus. 160. About the Ring Cleavage of the Phosphorus Three-Membered Heterocycles (t-BuP)2CMe2 and (t-BuP)2N(i-Pr) with Potassium or K-Naphthalenide The reaction of (t-BuP)2CMe2 with potassium or K-naphthalenide in tetrahydrofuran or 1,2-dimethoxyethane mainly leads to the symmetric phosphide K(t-Bu)P? ;CMe2? ;P(t-Bu)K ( 1 ) via P? ;P-bond cleavage. Above —78°C 1 decomposes into the monophosphides KHP(t-Bu) ( 3 ) and KP(t-Bu)(i-Pr) ( 4 ). In the case of (t-BuP)2N(i-Pr) under analogous conditions essentially the P? ;N-bond is split up yielding the phosphide K(t-Bu)P? ;P(t-Bu)? ;NH(i-Pr) ( 5 ), which is stable at room temperature. Contrary to (t-BuP)2BN(i-Pr)2 cyclic phosphides are not formed. The different reactive behavior in the metalation of phosphorus three-membered heterocycles of the type (PR1)2ER (E = hetero atom) is discussed.  相似文献   

12.
Synthesis, Characterization, and Structure of P7(t-Bu3Si)3 (?Tris(supersilyl)heptaphosphane(3)”? Tris(tri-tert-butylsilyl)heptaphosphanortricyclane P7(t-Bu3Si)3 1 is obtained from the reaction of (t-Bu)3Si? Si(t-Bu)3 with white phosphorus and forms colorless to pale yellow thermostable crystals. 1 is identified by the complete analysis of its 31P{1H} NMR spectrum (A[MX]3 spin system) as well as by a single crystal structure determination (space group Pca21, a = 170.76(2)pm, b = 131.14(3)pm, c = 426.61(5)pm, α = β = γ= 90°, Z = 8 formula units in the elementary cell). The steric demand of the (t-Bu)3Si-Groups causes an increase of the exocyclic bond angles at the equatorial phosphorus atoms Pe, while it does not particularly influence the P7-skeleton. Chlorine (r.t.) and bromine (70°C) degrade the P7-cage of 1 with formation of PX3 and (t-Bu)3SiX (X = Cl, Br).  相似文献   

13.
Synthesis of Phenylnitrene Complexes with N-Trimethylsilylaniline. II. Characterization and Crystal Structure of the Rhenium(V) Complexes mer-[Re(NPh)Cl3(NH2Ph)(Ph3P)] and trans-[Re(NPh)(OMe)Cl2(Ph3P)2] Reaction of [ReOCl3(Ph3P)2] with N-trimethylsilylaniline yields mer-[Re(NPh)Cl3(Ph3P)2], which reacts under air with excess of N-trimethylsilylaniline to form [Re(NPh)Cl3 · (NH2Ph)(Ph3P)]. Crystallization from CH2Cl2/MeOH affords [Re(NPh)(OMe)Cl2(Ph3P)2] as an additional product. [Re(NPh)Cl3(NH2Ph)(Ph3P)] crystallizes in the monoclinic space group P21/n with a = 1 192.3(3); b = 1 918.9(3); c = 1 266.3(3) pm; β = 101.71(1)°; Z = 4. The rhenium atom has a distorted octahedral environment with the Cl atoms in meridional positions. The phenyl nitrene ligand is coordinated with an almost linear arrangement Re? N1? C40 = 166.8(6)° and with a bond distance Re?N = 170.5(6) pm. [Re(NPh)(OMe)Cl2(Ph3P)2] · 1/2CH2Cl2 crystallizes in the triclinic space group P1 : a = 1 103.1(4); b = 1 227.9(4); c = 1 711.3(5) pm; α = 70.48(3)°; β = 72.71(3)°; γ = 80.03(3)°; Z = 2. The rhenium atom exhibits a distorted octahedral coordination with the Cl atoms and the phosphine ligands in trans positions. As a consequence of the competition of the nitrene ligand and the trans-coordinated methoxy group the Re?;N bond length is slightly lengthened to 173.2(7) pm, while the Re? O bond length of 193.4(6) pm is short. The bond angles Re? N? C70 and Re? O? C80 are 173.3(7)° and 139.1(7)°, respectively.  相似文献   

14.
Contributions to the Chemistry of Phosphorus. 106. Synthesis and Properties of the Diphosphacyclopropane (t-BuP)2CHMe The new 1,2-di-tert-butyl-3-methyl-1,2-diphosphacyclopropane (1,2-di-tert-butyl-3-methyl-diphosphirane), (t-BuP)2CHMe ( 1 ), is obtained by reacting K(t-Bu)P? P(t-Bu)K with 1,1-dichloroethane under suitable conditions. 1 can be isolated by high vacuum distillation and is stable for months when stored under inert gas at room temperature. Particularly, no dimerization to the corresponding 1,2,4,5-tetraphosphacyclohexane takes place. The NMR parameters indicate an increase of the exocyclic bond angles compared to (t-BuP)2CH2. The signs of all CP coupling constants have been determined by spin tickling experiments. The 2J(CCP)-coupling of the methyl group at the ring carbon depends strongly on the dihedral angle.  相似文献   

15.
Contributions to the Chemistry of Phosphorus. 134. On the Triphosphanes H(t-BuP)3H' Li(t-BuP)3Li, and Me3Si(t-BuP)3SiMe3 The reaction of 1,3-diiodo-1,2,3-tri-tert-butyltriphosphane, I(t-BuP)3I, with lithium aluminium hydride leads to 1,2,3-tri-tert-butyltriphosphane, H(t-BuP)3H ( 1 ). 1 reacts with n-butyllithium to 1,3-dilithium-1,2,3-tri-tert-butyltriphosphide, Li(t-BuP)3Li ( 2 ), which reacts further with trimethylchlorosilane yielding 1,3-bis(trimethylsilyl)-1,2,3-tri-tert-butyltriphosphane, Me3Si(t-BuP)3SiMe3 ( 3 ). The triphosphanes 1, 2 and 3 could be isolated in a pure state. In solution 1 forms the threo, threo and the threo,erythro configurated diastereomers 1a and 1b in a ratio of about 2:1. 3 predominantly exists in form of the threo,erythro configurated diastereomer 3b by steric reasons.  相似文献   

16.
Contributions to the Chemistry of Phosphorus. 104. Synthesis and Properties of 1,3-Dihalogen-1,2,3-tri-tert-butyltriphosphanes (t-BuP)3X2, X = Cl, Br, I The halogenating ring-cleavage of tri-tert-butyl-cyclotriphosphane, (t-BuP)3, by iodine, bromine or phosphorus(V)bromide as well as phosphorus(V)chloride leads to the first 1,3-dihalogen-1,2,3-triorganyltriphosphanes (t-BuP)3I2 ( 1 ), (t-BuP)3Br2 ( 2 ), and (t-BuP)3Cl2 ( 3 ). The 1,2-dihalogen-1,2-di-tert-butyldiphosphanes (t-BuP)2I2 ( 4 ), (t-BuP)2Br2 ( 6 ), and (t-BuP)2Cl2 ( 9 ) as well as the dihalogen-tert-butylphosphanes t-BuPI2 ( 5 ), t-BuPBr2 ( 7 ), and t-BuPCl2 ( 10 ) are formed as by-products. Moreover, the reaction of (t-BuP)3 with PBr5 leads to 1-bromo-2,3,4-tri-tert-butyl-cyclo-tetraphosphane, (t-BuP)3(PBr) ( 8 ). The compounds 1 and 3 could be isolated in a pure state and were characterized in all details. 3 is a reMarkably stable open-chain triphosphane.  相似文献   

17.
Contributions tot he Chemistry of Phosphorus. 148. Synthesis and Properties of the 1,2-Diphospha-3,4-diboretane (t-BuP)2(BNMe2)2 The first 1, 2-diphospha-3,4-diboretane (1,2-diphospha-3, 4-diboracyclobutane) (t-BuP)2(BNMe2)(1) was prepared by [2+2] cyclocondensation of K(t-Bu)P? P(t-Bu)K with Cl(Me2N)B? B(NMe2)Cl. 1 could be isolated in the pure state and was NMR spectroscopically characterized as a compound with a planar P2 B2 ring skeleton.  相似文献   

18.
Contributions to the Chemistry of Phosphorus. 128. Synthesis of the Diphosphastanna-cyclopropane (t-BuP)2Sn(t-Bu)2 The first three-membered P2Sn heterocycle, 1,2,3,3-tetra-tert-butyl-1,2,3-diphosphastanna-cyclopropane (1,2,3,3-tetra-tert-butyl-1,2,3-diphosphastannirane) ( 1 ), has been synthesized by [2+1] cyclocondensation of K(t-Bu)P—P(t-Bu)K with (t-Bu)2SnCl2. 1 is stable at room temperature. Besides, (t-BuP)2[Sn(t-Bu)2]2 ( 2 ), (t-BuP)4Sn(t-Bu)2 ( 3 ), and (t-BuP)4 are formed. In the reaction with Et2SnCl2, the six-membered ring compound [(t-BuP)2SnEt2]2 ( 4 ) is the main-product; the four- and five-membered cyclostannaphosphanes (t-BuP)3SnEt2 ( 5 ) and (t-BuP)3(SnEt2)2 ( 6 ) are also formed. 1 could be isolated in the pure state and has been unambiguously characterized as a three-membered heterocycle with a P2Sn skeleton. The 31P-NMR parameters of the other new cyclostannaphosphanes 2–6 are reported.  相似文献   

19.
Contributions to the Chemistry of Phosphorus. 152. Functionalized Cyclotriphosphanes of the Type (t-BuP)2PX (X = K, SiMe3, SnMe3, Cl, Br, PCl2, P(t-Bu)Cl, P(t-Bu)I) Functionalized cyclotriphosphanes of the type (t-BuP)2PX with electropositive or electronegative substituents X have been prepared on various synthetic routes: KP(t-BuP)2 ( 1 ) can be obtained in 50–55 per cent purity by reacting (t-BuP)4 or (t-BuP)3 with potassium. Reaction of 1 with Me3SiCl or Me3SnCl leads to the cyclotriphosphanes (t-BuP)2PSiMe3 ( 2 ) and (t-BuP)2PSnMe3 ( 3 ), respectively; the cyclocondensation of Cl(t-Bu)P? P(t-Bu)Cl with P(SnMe3)3, however, is more convenient for the preparation of 3 . In a similar way the halogenated compounds (t-BuP)2PCl ( 4 ) and (t-BuP)2PBr ( 5 ) can be obtained from Me3Sn(t-Bu)P? P(t-Bu)SnMe3 ( 6 ) and PX3 (X = Cl, Br). The phosphino-substituted cyclotriphosphanes (t-BuP)2P? PCl2 ( 7 ), (t-BuP)2P? P(t-Bu)Cl ( 8 ), and (t-BuP)2P? P(t-Bu)I ( 9 ) are accessible by the reaction of 3 with PCl3 and t-BuPX2 (X = Cl, I), respectively. 2–9 could be obtained free from phosphorus-containing by-products and were 31P-NMR spectroscopically characterized as compounds with a cyclic P3 skeleton.  相似文献   

20.
Novel Silver‐Telluride Clusters Stabilised with Bidentate Phosphine Ligands: Synthesis and Structure of {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)}, [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl], and [Ag38Te13(Te t Bu)12(Ph2P(CH2)2PPh2)3] Bidentate phosphine ligands have been found effective to stabilise polynuclear cores containing silver and chalcogenide ligands. They can act as intra and intermolecular bridges between the silver centres. The clusters {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)} ( 1 ), [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl] ( 2 ), and [Ag38Te13(TetBu)12(Ph2P(CH2)2PPh2)3] ( 3 ) have been prepared and their molecular structure determined. Compound 2 and 3 are molecular structures with separated cluster cores while 1 forms a polymeric chain bridged by phosphine ligands. ( 1 : space group P21/c (No. 14), Z = 4, a = 3518,1(7) pm, b = 2260,6(5) pm, c = 3522,1(7) pm, β = 119,19(3)°; 2 : space group R3 (No. 148), Z = 6, a = b = 3059,4(4) pm, c = 5278,8(9) pm; 3: space group Pccn (No. 56), Z = 4, a = 3613,0(9) pm, b = 3608,6(7) pm, c = 2153,5(8) pm)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号