首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The crystal structure of nylon 3 was studied, and four crystalline modifications were observed. Modification I, as determined from the x-ray diffraction pattern of drawn fibers, is similar to the α crystal structure of nylon 6. The unit cell is monoclinic; a = 9.33 Å, b = 4.78 Å, (fiber identity period), c = 8.73 Å, and β = 60°. The theoretical density for nylon 3 with four monomeric units in the unit cell is 1.39 g/cm3, and the observed density is 1.33 g/cm3. The space group is P21. The nylon 3 chains are in the extended planar zigzag conformation. Although other odd-numbered nylon form triclinic or pseudohexagonal crystals when oriented, drawn nylon 3 crystals are monoclinic. In addition to modification I, modifications II, III, and IV were studied. Lattice spacings of modifications II and III are equal to those of modification I. However x-ray diffraction intensities are different. Infrared spectra of those forms indicate an extended planar zigzag conformation of the chains. Modification IV is thought to correspond to the so-called smectic hexagonal form. No γ crystals were found, and it appears that polyamide chains with short sequences of methylene groups cannot form crystals of this type.  相似文献   

2.
4-Acetoxy 4′-carboxy biphenyl has been polymerized from solution, the bulk melt, and in constrained thin films, all below the melting point of the monomer as measured by differential scanning calorimetry (DSC). An isothermal sublimation–recrystallization–melting (and chemical change)–polymerization–crystallization process is proposed. From solution and in the thin films, single crystals consisting of ca. 100 Å thick lamellae are observed, with evidence for monomer addition–reaction on the end (top and bottom) surfaces. The bulk samples are fibrous, the “fibers” consisting of whisker-like single crystals. The polymer is highly heat and radiation (electron beam) resistant, with numerous successive electron diffraction (ED) patterns from the same crystal or sheared sample permitting comparison of the changes in ED patterns with transitions seen by DSC at ca. 350, 530, and 590°C. Phase I (a = 7.8, b = 5.5, c = 10.8 Å), a possible phase II (a = 15.6, b = 3.6 Å c = unknown), and a phase III (a = 9.0, b = 5.2 = √3a, c = 10.8 Å). Phases I and II are seen in samples polymerized at temperatures at and below 310°C; phase III is observed in samples polymerized at and above 350°C and in sheared samples. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
The structure and morphology of crystalline nylon 3 [poly(β-alanine)] have been studied by electron microscopy and x-ray diffraction. Two clearly defined forms are detected. Form I appears as spherulites made up of ribbonlike lamellae upon crystallization at high temperature from a solution in phenol–butanediol-1,4. They have monoclinic unit cell with a = 9.60 Å, c = 8.96 Å, and β = 122.5°. The hydrogen-bonded planes run parallel to the long dimension of the crystals. Form II is observed when the samples are prepared from formic acid solution at room temperature. A second type of spherulite with a microfibrillar structure is formed in this case. The isolated crystalline structures obtained from Form II appear to grow along the intersheet direction rather than along the hydrogen bond direction, which constitutes anomalous behaviour. Our results for this second form are consistent with an orthorhombic lattice with a = 9.56 Å and c = 7.56 Å. No clear information is obtained on the b dimension of the unit cell (chain axis) in either case. We assume a value of 4.78 Å, which corresponds to fully extended chains. The two forms coexist in films prepared from a formic acid–water solution as well as in samples recovered immediately after polymerization.  相似文献   

4.
Crystal structures of 4-[(3,5-dibromo-2-hydroxy-benzylidene)-amino]-benzenesulfonamide (I), 4-[(3,5-dibromo-2-hydroxy-benzylidene)-amino]-N-thiazol-2-yl-benzenesulfonamide (II), and 4-[((3,5-dibromo-2-hydroxy-benzylidene)-amino]-N-(5-ethyl-1,3,4-thiadiazol-2-yl)-benzenesulfonamide (III) have been determined. The crystals of I are monoclinic, a = 8.645(2) Å, b = 12.622(3) Å, c = 14.414(3) Å; β = 104.31(3)°, space group P21/n, Z = 4, R = 0.0642. The crystals of II are also monoclinic, a = 10.313(2) Å, b = 11.288(2) Å, c = 15.766(3) Å; α = 99.37(3)°, space group P21/c, Z = 4, R = 0.0635. The crystals of III are triclinic, a = 10.567(2) Å, b = 10.849(2) Å, c = 18.432(4) Å; α = 75.97(3)°, β = 89.71(3)°, γ = 87.33(3)°, space group P-1, Z = 4, R = 0.0644. The asymmetric part of the unit cell of compounds I and II contains a single molecule of the Schiff’s base, while in III two independent azomethine molecules A and B. The studied compounds I–III adopt the E-configuration relatively to the double azomethine bond C=N. Owing to phenolic oxygen together with nitrogen and oxygen atoms of the sulfonamide group, compound I makes in a crystalline state a two-dimensional hydrogen bonded network parallel to the plane (1 0 1). Compound II forms centrosymmetric dimers in the crystals via N-H…N hydrogen bonds. These dimers, in their turn, are connected by hydrogen bonds O-H…O into infinite chains running along the double screw axis b. As in II, molecules and of compound III form centrosymmetric dimers through hydrogen bonding N-H…N. These dimers are linked into infinite chains running along the c axis by hydrogen bonds C-H…O. The π-π-stacking interaction of aromatic rings is observed in all the compounds studied.  相似文献   

5.
Allylthiourea crystals grown from water and from ethanol have been found to belong to the space groupP21/c and P21/m or related, respectively. The corresponding unit cell parameters are a = 13.45 Å, b = 17.33 Å,c = 14.38 Å, β = 96.6°, and d = 1.18g/cm3 for water-grown crystals, and a = 14.65 Å, b = 17.18 Å, c = 13.15 Å, β = 95.5°, and 1.17 g/cm3 for ethanol-grown crystals.  相似文献   

6.
Crystal structures of 6-[(2-hydroxy-1,1-bis-hydroxymethyl-ethylamino)-methylene]-4-nitro-cyclohexa-2,4-dienone hydrate (I) and 6-[(2-hydroxy-1,1-bis-hydroxymethyl-ethylamino)-methylene]-4-bromo-cyclohexa-2,4-dienone (II) have been determined. The crystals of I are monoclinic, a = 16.957(1) Å, b = 10.729(2) Å, c = 7.240(3) Å; β = 99.56(3)°, space group P21/c, Z = 4, R = 0.0492. The crystals of II are triclinic, a = 10.282(2) Å, b = 7.189(3) Å, c = 16.831(3) Å; α = 90.67(3)°, β = 100.10(3)°, γ = 95.87(3)°; space group P-1, Z = 4, R = 0.0591. The independent part of the unit cell of I contains one unique molecule and water of crystallization, while in II — two unique molecules A and B. C(CH2OH)3 fragment of the molecule B manifests the disordering of alcohol oxygen atoms. Both in I and II, the salicylidene fragment of the molecules exists in the quinoid tautomeric form.  相似文献   

7.
The molecular structure of poly (p-hydroxybenzoic acid) (C6H4COO)x at ambient temperature was determined by x-ray powder diffraction analysis. The diffraction pattern is explained as a mixture of two orthorhombic phases having the same space group Pbc21 with four C6H4COO chemical repeats in the unit cell and the following cell parameters: a = 7.42 Å, b = 5.70 Å, and c = 12.45 Å for phase I (ρcalc = 1.51 g cm?3); and a = 3.83 Å, b = 11.16 Å, and c = 12.56 Å for phase II (ρcalc = 1.48 g cm?3). The chain conformation is the same in both phases, involving two benzoyl rings staggered by ca. 120° along the chain. Disorder has been considered in the packing of phase I by giving equal occupancy to the two molecules oriented up or down along the c chain axis. ©1995 John Wiley & Sons, Inc.  相似文献   

8.
The crystal structure of [3,O-didehydro-MeBmt1, Val2]cyclosporin (PSC-833; 1 ) was investigated by X-ray analysis. Data were collected from two different crystal modifications. Modification I crystallizes in P3121, a = b = 21.419 (2) Å, c = 32.101 (3) Å with one molecule in the asymmetric unit, modification II in P3221, a = b = 21.313 (2) Å, c = 62.053(3) Å with two molecules per asymmetric unit. This non-immunosuppressive analogue of cyclosporin A adopts a similar backbone conformation to that found in the crystal structure of cyclosporin A and other analogues. Three different data sets of modification I were collected using an Enraf-Nonius-CAD4 diffractometer with CuKα radiation at 20°, a Stoe-Siemens four-circle diffractometer with MoKα radiation at ? 120°, and an EMBL image-plate scanner with synchrotron radiation at 12°. The quality of the data sets was evaluated by internal consistency, independent structure solution, and refinement. The structural parameters reported here for modification I are based on the synchrotron data.  相似文献   

9.
Of the two electron-donor-containing polymers whose synthesis was described in Part I of this series, one was crystalline. This polymer, which contains (methylthio)phenoxy electron-donating groups on the side chains of an N-acyl-substituted polyethylenimine, could be indexed in a triclinic unit cell of dimensions a = 4.35 Å, b = 24.0 Å, c = 12.7 Å, and α = β = γ = 90°. The polymer has the side chains alternating on each side of the polymer backbone. They extend to form at 24.0 Å repeat in that direction. The thickness of the ribbonlike molecule is 4.35 Å, while the repeat distance along the polymer backbone is 12.7 Å, which includes four monomer units.  相似文献   

10.
The crystal structure of N,N-Diiodoformamide, HCONI2, has been determined from three-dimensional diffractometer data and refined to a conventionalR-value of 4.1%. The crystals are orthorhombic, space group Pn 21a,Z=4, with the unit cell parametersa=10.758,b=7.075,c=6.671 Å. The molecules are connected by intermolecular I?O-bonds forming chains along thea-axis. Between the chains exist weaker I?O-contacts which link the chains to form layers perpendieular to theb-axis.  相似文献   

11.
Single crystals of poly(terephthalic anhydride) (PTA) have been grown using the confined thin film melt polymerization technique. Thin lamellae (ca. 50 Å) are found for low polymerization temperatures, with thick crystals forming for polymerization at 200°C. Shearing of the material shortly after the initiation of polymerization at 200°C yielded single crystal domains composed of fibrillar texture material; these samples gave [010] zone ED patterns complementing the [001] zone patterns from the unsheared CTFMP samples. A monoclinic, single chain, two repeat unit, unit cell (Pc11) is proposed based on four different electron diffraction zone patterns: a = 6.01 Å, b = 3.945 Å, c = 14.11 Å, α = 106.9°. Simulations, using the Cerius2 program, of the corresponding molecular conformation, packing and electron diffraction (ED) patterns were performed; the ED simulations are in good agreement with the observed patterns. An R-factor of 0.23 is obtained based on a comparison of calculated and observed structure factors for the 39 independent ED reflections observed on the different zone patterns. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
X-ray diffraction patterns were obtained for as-cast and oriented films of poly(γ-benzyl L -glutamate) and a comparison was made of the molecular packing of the α-helices in forms B and C. Form B snowed Bragg reflections on the layer lines as well as on the equator. The spacings were explained by a monoclinic unit cell comprising two chains, with a = 29.06 Å, b = 13 20 Å, c = 27.27 Å α = γ = 90°. and β = 96°. The chains contained in this unit cell and consequently alternating in the crystal have opposite chain directions. Form C showed continuous scattering on the layer lines and reflections on the equator. This form, therefore, is a nematiclike paracrystal in which the packing of α-helices is periodic in the direction lateral to the chain axis (a = 14.8–115.2 Å, b = 14.3–14.8 Å, c = 27 Å, and γ = 118°–120°), but the relative levels of the chains along the chain axes are displaced. The formation of form C may be attributed to random placement of two chains with mutually opposite chain directions.  相似文献   

13.
High-quality ZnSnAs2 (I) single crystals have been grown. The unit cell parameters of compound I have been refined (a = b = 5.8360(1), c = 11.686(2) Å), and its crystal structure has been determined.  相似文献   

14.
Single crystals of poly(naphthalic anhydride) (PNA) have been grown using our confined thin film melt polymerization technique. Lamellae, 70–100 Å thick, are found for the crystals polymerized at 180°C with thinner lamellae for a 200°C polymerization temperature. In addition, irregular lath-shaped crystals are found for both polymerization temperatures, apparently formed by a solid-state polymerization process within the original needle-like monomer crystals. The crystal structure of PNA has been studied by electron diffraction (ED) and computer modeling based on seven different zonal ED patterns. It is found that, in most cases, two or three different zonal patterns are superimposed with a common plane, suggesting variable chain tilting even in individual lamellae. Shearing of the material shortly after the initiation of polymerization, permitted obtaining an additional [010] zone ED pattern. A monoclinic unit cell with one chain, two repeat units is proposed based on measurements of 21 independent reflections; the space group is Pc11; a = 6.26 Å, b = 4.33 Å, c = 18.60 Å, and α = 122.5°. The computer-simulated (Cerius2) molecular conformation and chain packing are described with the corresponding simulated electron diffraction patterns being in good agreement with the observed ones. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1575–1588, 1997  相似文献   

15.
The solid-state polymerization of a diacetylene, 1,11,13,23-tetracosatetrayne, was studied using x-ray powder diffraction and electron diffraction. It is shown that the material exhibits polymorphism. Thermochromic transitions, which are generally observed for diacetylenes, are related to the particular crystalline phase using x-ray powder diffraction. The unit cell dimensions and space group of one polymorph were determined by electron diffraction analysis: a = 20.83 Å, b = 4.84 Å, c = 10.08 Å, β = 92.4°, space group: P21/n. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Single crystals of two liquid crystal compounds, 5‐{[4′‐(((pentyl)oxy)‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO5) and 5‐{[(4′‐nonyloxy‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO9), have been prepared by solution growth technique. The morphologies and structures of A3EO5 and A3EO9 crystals were investigated by wide angle X‐ray diffraction (WXRD), atom force microscope (AFM) and transmission electron microscope (TEM). In contrast to the same series of compounds which have a longer alkyl tail, 5‐{[(4′‐heptoxy‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO7), 5‐{[(4′‐heptoxy‐4‐biphenylyl)oxy]carbonyl}‐1‐pentyne (A3E′O7) and A3EO9, A3EO5 shows strikingly different crystalline behavior. The former three compounds have only one crystal form, whereas A3EO5 exhibits polymorphism. Specifically, A3EO5 crystals grown from toluene solution show two crystal forms. The first one is crystal I which adopts a monoclinic P112/m space group with unit cell parameters of a?5.79 Å, b?8.34 Å, c?43.92 Å, γ?96°, and the other one is crystal II which adopts a monoclinic P112 space group with unit cell parameters of a?5.55 Å, b?7.38 Å, c?31.75 Å, γ?94°. When using dioxane as the solvent to grow A3EO5 crystal, we can selectively obtain crystal I. A3EO5 melt‐grown crystals also have two crystal forms which derive from crystal I and crystal II, respectively. The different crystalline behavior of the compounds should correlate with their different electron dipole moment resulting from the different length of alkyl tail.  相似文献   

17.
In this study, wide-line NMR and x-ray diffraction have been used in conjunction to study the crystal structure of poly(vinylidene fluoride). Drawn poly(vinylidene fluoride) film was found to contain two crystal phases, the relative amounts of each depending on the draw temperature. Drawing at 50°C. yields a single phase, designated as phase I, while drawing at temperatures between 120 and 160°C. yields a mixture of phase I and a second phase (phase II). The fraction of phase II increases with increasing draw temperature, but this phase was never obtained without some phase I. A tentative orthorhombic unit cell is proposed for phase II. The structure of phase I has been determined from x-ray data. The unit cell is orthorhombic, space group Cm2m, having lattice constants a = 8.47, b = 4.90, and c (chain axis) = 2.56 A. There are two polymer chains in this unit cell. The conformation of the polymer chains is planar zigzag. The details of this structure have been confirmed by experimentally determining at ?196°C. the change in the NMR second moment with the angle between the magnetic field and the draw direction of phase I (drawn at 50°C.), and by comparing these results with a theoretical calculation of the second moments, based on the atomic positions obtained from the proposed structure.  相似文献   

18.
The polymorphism of isotactic poly(pentene-1) form I was studied by x-ray diffraction. Upon quenching from the melt at a temperature below 25°C, the films crystallized in a stable monoclinic form, which we have designated as form I (a = 22.4 ± 0.2 Å, b = 6.49 ± 0.05 Å, c = 21.2 ± 0.2 Å, β = 91 ± 1°). For higher quenching temperatures, a metastable form, form I′, appeared, which transforms to the normal modification upon aging (monoclinic, with: a = 24.3 ± 0.2 Å, b = 6.50 ± 0.05 Å, c = 19.3 ± 0.2 Å, β = 96 ± 2°). Both modifications have a 31 helical conformation. Limited changes in the packing mode could explain this polymorphism.  相似文献   

19.
The novel ternary polyphosphides M4P21I (M = K, Rb) have been synthesized from the elements in single crystalline form, representing further examples for the formation of mixed crystals between simple salts and binary phosphides. They form as ruby‐red platelets and dark‐red prisms, respectively, and are only slightly sensitive to moisture and oxygen. The compounds are isotypic (Ccmm (no 63); Z = 4; oP104; K4P21I: a = 12.853Å; b = 21.795Å; c = 9.748Å; 1168 hkl, R = 0.033; Rb4P21I: a = 13.281Å; b = 21.868Å; c = 9.771Å; 777 hkl, R = 0.053) and feature corrugated 2D networks formed from two different types of polymerized P7 units. The networks form large cavities filled by M+ and I ions. Zigzag chains of condensed trigonal M6 prisms, centered by the I anions, separate the polyphosphide nets. The mean homoatomic P‐P bond length (d = 2.216Å) corresponds to a P‐P single bond. However, the individual P‐P distances vary with position and function (2.126 ‐ 2.247Å) and these are compared with those of the isolated P21‐3 anion.  相似文献   

20.
Thin film polymerization/crystallization of poly-4-oxybenzoate (P-4-OB) from melt or dilute solutions yields on mica cleavage surface an epitaxial overgrowth with crystal blocks oriented in 1 to 3 substrate directions rotated by 60°. The b and c crystal axes of P-4-OB lie in the mica cleavage plane, with the a axis being perpendicular to it. At higher polymerization temperatures a different type of P-4-OB orientation on mica was also observed: two P-4-temperatures a different type of P-4-OB orientation on mica was also observed: two P-4-OB phase I crystals, again with b- and c-axes lying parallel to mica cleavage plane, were oriented perpendicular to each other. There is a pronounced tendency of the relatively thick P-4-OB overgrowth to form complex crystal structures involving both phase I and II with different types of orientation on mica substrate. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号