首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interpolymer adduct formation between poly(N-vinylpyrrolidone) (PVP) and poly(methacrylic acid) (PMAA) is mainly due to hydrogen bonding. It is found that the interpolymer adduct formation is enhanced in the presence of Cu(II). A simple turbidity measurement making use of a spectrophotofluorometer is described for the study of the interpolymer adduct formation. Enhanced adduct formation in the presence of Cu(II) is described by the empirical relation d[PAd]/D[PVP] = k × 10[Cu(II)]α, where PAd represents the interpolymer adduct and α and k are constants. Similar results have been obtained in the case of interpolymer adduct formation between poly(acrylic acid) (PAA) and PVP. In the above expression α signifies the influence of chelation on Cu(II)–PAA/PMAA–PVP-type complex formation and k is the extent of PVP–PAA/PMAA interaction. The enhancement of adduct formation in the presence of Cu(II) is more in PAA than in PMAA. Turbidity and viscosity measurements further indicate that the influence of Cu(II) on interpolymer adduct formation between PVP and PMAA or PAA is more in the case of PAA than PMAA, as PAA is a better chelating ligand. But the extent of adduct formation is more in the case of PMAA in the absence of Cu(II) ions due to hydrophobic interactions exerted by methyl groups.  相似文献   

2.
Polymer complexation between poly(styrene-co-maleic acid), (SMA28) and (SMA50) containing 28 and 50 mol% of maleic acid and poly(vinyl pyrrolidone) (PVP), has been investigated by differential scanning calorimeter (DSC), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). All results showed that the ideal complex composition of SMA28/PVP and SMA50/PVP leads, respectively, to 2:1 and 1:1 mole ratio of interacting components.For the investigated systems, the Tg versus composition curve does not follow any of the usual proposed models for polymer blends. Withal, a new model proposed by Cowie et al. is used to fit the Tg data and it is found to reproduce the experimental results more closely. According to n and q obtained values, it seems reasonable to conclude that the inter-associated hydrogen bonds dominate in SMA28/PVP (2:1) complexes. This effect is corroborated by the FTIR study as evidenced by the high displacement of the specific bands and ionic interactions have been clearly identified. Finally, a thermogravimetric study shows that ionic interactions increase the thermal stability of these complexes.  相似文献   

3.
Stoichiometric and nonstoichiometric polyion complex films were prepared from poly(sodium p-styrene sulfonate) and poly(diallyl dimethyl ammonium chloride). X-ray photoelectron spectroscopy revealed that the ionic groups in the complex are more ionized than in each component polymer. Fluorescence measurements showed that the complex had a main emission peak around 300 nm, whereas the peak for its original polyanion occurred at 324 nm. With the monomer and excimer peaks of the phenyl rings taken to be at 294 and 324 nm, respectively, the ratio of excimer to monomer emission intensities increased in proportion to the mole fraction of polyanion in the observed range 0.44–0.59. There was no discontinuity at the stoichiometric composition. Furthermore, the change in peak position shows that the local aggregation of phenyl groups in the polyanion was destroyed by complexation with the polycation through Coulombic forces. These results, together with the visual observation of the transparency of the films, mean that the mixing between polyanion and polycation chains in the polyion complex is on the molecular level and that this polymer alloy is miscible.  相似文献   

4.
Poly(acrylic acid) (PAA) with different molecular weight and poly(vinylpyrrolidone) (PVP) were prepared by free radical polymerization using 2,2′-azoisobutyronitrile (AIBN) as initiator in anhydrous methanol for PAA, and in distilled water for PVP. Then, the complexation between PAA and PVP in aqueous solution was studied by UV transmittance measurement and fluorescence probe technique. The result shows that (1) at low pH, the formation of complexation between PAA and PVP bases on the intermacromolecular hydrogen bond and the composition of the formed complex is around 3:2 (the unit molar ratio of PAA to PVP) at pH 2.60 over the range of pH investigated. (2) The cooperative interaction through the formation of hydrogen bond among active sites plays an important role in complex formation, and depends on the pH of solution, the required minimum chain length of poly(acrylic acid). (3) The hydrogen bond is not affected by small molecular salt, which only affects those carboxylic groups without forming hydrogen bond on the PAA chain.  相似文献   

5.
The comb‐type polyelectrolyte, poly(ethylene glycol)‐graft‐poly(allyl amine) (PEG‐g‐PAA), was synthesized to prepare polyion complex (PIC) micelles with Aspergillus Niger Glucose oxidase (GOD). Even after mixing GOD and PEG‐g‐PAAs with various PEG contents, the resulting mixtures remained transparent but the mixture of GOD and PAA homopolymer immediately precipitated. In the mixtures prepared with a stoichiometric mixing ratio, the formation of PIC micelles with a core‐shell structure was suggested from dynamic and static light scattering measurements. Glucose, the substrate for GOD, could easily diffuse into the PIC micelles, and the GOD molecules were active even in the core of the PIC micelles. GOD didn't lose its enzymatic activity through entrapment into the PIC micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3842–3852, 2008  相似文献   

6.
Blends of poly(vinyl chloride) (PVC) with Poly(N‐vinyl pyrrolidone) (PVP) were investigated by Fourier infrared spectroscopy (FTIR) and high‐resolution solid‐state 13C cross‐polarization/magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy. The intermolecular interactions between PVP and PVC are weaker than the self‐association of PVP and the inclusion of the miscible PVC results in the decreased self‐association of PVP chains, which was evidenced by the observation of high‐frequency shift of amide stretching vibration bands of PVP with inclusion of PVC. This result was further substantiated by the study of 13C CP/MAS spectra, in which the chemical shift of carbonyl resonance of PVP was observed to shift to a high field with inclusion of PVC, indicating that the magnetic shielding of the carbonyl carbon nucleus is increased. The proton spin‐lattice relaxation time in the laboratory frame (T1 (H)) and the proton spin‐lattice relaxation time in the rotating frame (T(H)) were measured as a function of the blend composition to give the information about phase structure. It is concluded that the PVC and PVP chains are intimately mixed on the scale of 20–30Å. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2412–2419, 1999  相似文献   

7.
An interpolymer complex was prepared by mixing aqueous solutions of poly(ethylene oxide) (PEO) and of a poly(carboxylic acid), i.e., poly(acrylic acid)(PAA), poly(methacrylic acid)(PMAA), or styrene-maleic acid copolymer(PSMA). The complexation mechanism was discussed on the basis of results of such experimental methods as viscosity, potentiometric titration, and turbidimetry. The hydrogen bond is primarily involved in these complexations, but the influence of hydrophobic interaction on complexation can not be ignored. If the degree of dissociation α of carboxylic acid or the degree of polymerization Pn of PEO was perceptibly changed, a stable complex was obtained at about α 0.1 or Pn (PEO) = 40 for PMAA, 200 for PAA. This fact indicates that more than a definite number of binding sites are necessary for a stable interpolymer complex to be formed and that cooperative interaction among active sites plays an important role in complex formation.  相似文献   

8.
Blends of poly(monoitaconates)b) containing different side chain structures with poly(N-vinyl-2-pyrrolidone) (PVP) of three different weight-average molecular weights (M̄w) were studied by thermomechanical analysis. Blends containing PVP of M̄w =10000 shows a monotonous variation of the coefficient of linear expansion α against composition but PVP samples of higher molecular weights present a minimum which is attributed to polymer-polymer complex due to strong specific interactions.  相似文献   

9.
Polymer complexes were prepared from high molecular weight poly(acrylic acid) (PAA) and poly(styrene)‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) in dimethyl formamide (DMF). The hydrogen bonding interactions, phase behavior, and morphology of the complexes were investigated using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this A‐b‐B/C type block copolymer/homopolymer system, P4VP block of the block copolymer has strong intermolecular interaction with PAA which led to the formation of nanostructured micelles at various PAA concentrations. The pure PS‐b‐P4VP block copolymer showed a cylindrical rodlike morphology. Spherical micelles were observed in the complexes and the size of the micelles increased with increasing PAA concentration. The micelles are composed of hydrogen‐bonded PAA/P4VP core and non‐bonded PS corona. Finally, a model was proposed to explain the microphase morphology of complex based on the experimental results obtained. The selective swelling of the PS‐b‐P4VP block copolymer by PAA resulted in the formation of different micelles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1192–1202, 2009  相似文献   

10.
Poly(N-tert-butylacrylamide) (PNtBAm) and poly(acrylic acid) (PAA) form interpolymer complexes in 1- and 2-propanol, blend in ethanol, whereas a segregative phase separation is observed when using methanol as solvent as shown by Fourier transform infrared (FTIR) spectrometry and elemental analysis studies. The composition of PNtBAm/PAA complexes has been determined. Thermal studies demonstrated that all complexes show unique glass transition temperatures, higher than those of the polymer components. Complexation of PAA with PNtBAm results in an improvement of its thermal stability. Solvent effects and specific interactions in the system PNtBAm/PAA have been studied by FTIR, revealing that differences in the polymer–solvent interactions are a decisive factor governing complex formation in solution.  相似文献   

11.
Nanotubes of poly(4-vinylpyridine) (PVP) and poly(acrylic acid) (PAA) were fabricated by hydrogen bonding based on layer-by-layer (LbL) assembly. The uniform and flexible tubular structures were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). FTIR and X-ray photoelectron spectroscopy (XPS) measurements confirm the formation of hydrogen bonds in the assembled nanotubes. PAA can be released from the assembled PAA/PVP nanotubes in a basic aqueous solution to give the walls of the tubes a porous structure. Such assembled nanotubes can be considered as carriers for catalysts or drugs, especially in aqueous solution against capillary force.  相似文献   

12.
Insoluble complexes are formed in acidic aqueous media when poly(acrylic acid) (PAA) and poly-(vinylbenzo-18-crown-6) (P18C6) or polyvinylbenzoglymes are mixed. Complex formation results from hydrogen bonding between carboxyl groups and crown ether- or glyme–oxygen atoms as well as from hydrophobic interactions. The precipitation is pH dependent and was determined as a function of the ratio PAA to P18C6 or to polyglyme at different HCl concentrations in 10?4M solutions of polycrown or polyglyme. Precipitation is nearly quantitative in 0.01N HCl. The compositions of PAA/P18C6 precipitates were determined as a function of the initial PAA/P18C6 ratio in solution. The complexes with P18C6 can be solubilized in acidic media when crown-complexable cations (K+, Cs+, Ba2+) are added, but the charged P18C6 reprecipitates in basic solution as a polysalt complex with the PAA–polyanion. More stable PAA–P18C6 complexes in the form of fibers can be obtained by interfacial complex formation. Poly(methacrylic acid) is less effective as a complex former.  相似文献   

13.
Thermal measurements were carried out to investigate the macrostructure of as-cast poly(vinylidene fluoride) (PVDF)/poly(vinyl pyrrolidone) (PVP) blends. At high PVP content, above about 70 wt.%, the two components form a homogeneously mixed amorphous phase whose Tg varies with composition. Crystals are formed upon casting mixtures richer in PVDF; these systems exhibit complex thermal behavior that cannot be justified by a simple two-phase model. DSC measurements above room temperature on semicrystalline blends show, in addition to the melting of PVDF crystals at temperatures that decrease on increasing PVP content, a glass transition at about 80°C, independent of composition. Experimental results strongly support the hypothesis that an interphase, composed of essentially undiluted noncrystalline PVDF, is always associated with the lamellar crystals.  相似文献   

14.
pt‐Butyl calix[4]arene diol (distal cone) (1) was grafted with poly (acrylic acid) (PAA) to obtain hydrophobically modified PAA (PAA‐C) bearing calixarene moieties. The grafting method includes the direct esterification reaction of PAA with calixarene diol 1 which was carried out in a system of tosyl chloride (TsCl), pyridine (Py), and N,N‐dimethylformamide (DMF). The grafting yield was studied using different molar ratios of PAA to calix[4]arene diol 1, temperature, and reaction time. The chemical composition of the PAA‐C was studied by IR and 1H NMR spectroscopy. Also, the morphology of PAA‐C was evaluated by scanning electron microscopy. The PAA‐C had different solubility and thermal properties. The extraction ability measurements of modified PAA toward alkali metal cations (Na+, K+, Cs+) and Ag+ showed a remarkable efficiency and selectivity of PAA‐C toward Na+. The main goal of this work was to design hydrophobically modified PAA with binding ability that is suitable for ion selective membranes and chemical sensor devices such as ion‐specific electrodes, semipermeable membranes, and quartz microbalances. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Interpolymer complexes of a slightly basic polymer, poly(N-vinylimidazole) (PVIm) with a strongly acidic polymer, poly(acrylic acid) (PAA) have been prepared by mixing aqueous solutions of the respective components. Spectroscopy and thermal methods were used to reveal interaction between VIm and AA moieties. FT-IR analysis showed that the nitrogen atoms at 3rd position of imidazole ring are involved in strong H-bonding with acid groups of PAA leading to a uniform and fully miscible complex structure. As the quantity of PAA increases the thermal stability of complex increases based on TG results. In the DSC analyses, the single Tg for all IPC samples showed that IPCs have good or definite miscibility over the whole range of composition as a result of H-bond formation between acrylic acid and imidazole units.  相似文献   

16.
The surface polyion complex gel (sPIC gel), which possesses chemically bonded nonionic gel moiety, was designed using N‐vinylacetamide (NVA), N‐vinylforamide (NVF), and vinyl phosphonic acid (VPA). Taking advantage of the property of NVF as vinylamine (VAm) precursor, the cationic moiety was introduced only onto the surface of poly(NVA‐co‐NVF), producing surface hydrolyzed poly(NVA‐co‐NVF‐co‐VAm), and the successive polymerization of VPA inside the gel successfully produced sPIC gel. The swelling ratio of the sPIC gel was investigated under various pH conditions, and compared with that of the fully polyion complex gel (PIC gel), using totally hydrolyzed poly(NVA‐co‐VAm). The swelling ratio of sPIC gel ranged between 14 and 25, while that of the PIC gel ranged between 2 and 5. The anionic compound, AR, showed a sustained release from sPIC gel at pH 2, due to the electrostatic interactions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 562–566  相似文献   

17.
The solid state of the complex between poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO), and that between poly(methacrylic acid) (PMAA) and PEO formed via hydrogen-bonding was studied by differential-scanning calorimetric (DSC) and by Fourier-transform infrared (FT–IR) spectroscopic measurements. Melting temperature Tm and the degree of the crystallinity Xc of PEO in the systems PAA (or PMAA)/PEO blends obtained from aqueous or dimethyl sulfoxide (DMSO) medium were measured in various unit mol % of PEO ([PEO]100/{[PAA(or PMAA)] + [PEO]}) where [ ] is the unit mole concentration. It was found that 50 unit mol % of PEO is a critical composition, which gives new evidence for the 1 : 1 complex formation between PAA (or PMAA) and PEO. From the FT–IR spectroscopic analysis in conjunction with DSC measurements we also found that the effects of solvent and of hydrophobic interaction (due to the α-methyl group of PMAA) are the important factors controlling the complexation in the solution and solid systems. These factors also affect the crystallization behavior and the microstructure of the PAA (or PMAA)/PEO blend in solid state.  相似文献   

18.
Self‐association in aqueous solution of amphiphilic poly(acrylic acid)‐b‐poly(propylene oxide)‐b‐poly(acrylic acid) (PAA‐b‐PPO‐b‐PAA) copolymers having various outer PAA block lengths are presented. These copolymers show two thermosensitive behaviors. The first one, due to hydrogen bonds between PAA and PPO resulting in large aggregates, was observed by visible spectroscopy. The second one, due to the association of PPO middle block into aggregates, was evidenced by dynamic light scattering and pyrene fluorescence. These critical temperatures both depend on the ionization and the length of PAA blocks. The characterization of the aggregates above the critical aggregation concentration by fluorescence quenching experiments showed a very low aggregation number corresponding to dimers or trimers association depending on the conditions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1507–1514  相似文献   

19.
The interaction between sodium poly(styrene sulfonate) (NaSS) and side-chain charged polycation polymer (pendent type) or main-chain charged polycation polymer (integral type) has been studied. It was found that the polyion complex (the reaction product of these polyelectrolytes) of pendent–pendent type has an equimolar composition at any mixing ratio of two component polymers. However, a polyion complex of integral–pendent type can form a water-soluble complex with a ratio of [polycation]/[polyanion] = 1/3, in addition to a complex with a equimolar composition. The mechanism of formation of this specific complex is discussed.  相似文献   

20.
The phenomenon of self-assembly of aggregates formed by relatively short chains of poly(vinyl alcohol) (PVA) on the long macromolecules of polyacrylamide (PAA) in aqueous medium are discussed. PVA and PAA form intermolecular polycomplexes (InterPC) of a constant composition independently on a ratio of polymer components. The complex formation between high-molecular-weight PAA and relatively low-molecular-weight poly(ethylene oxide) (PEO) are considered also. PEO with M ⩽ 4·104 g.mol−1 weakly interacts with PAA. The polymer-polymer interaction can be intensified when the part of amide groups (∼20 mol %) on PAA chain to transform into the carboxylic groups. InterPCs formed by PEO and initial or modified PAA have associative structure with friable packing of the polymer segments. They are stabilized by the hydrogen bond system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号