首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contributions to the Chemistry of Phosphorus. 129. Synthesis and Properties of the Phospha-germa-cyclobutanes (t-BuP)2(GePh2)2 and (t-BuP)3GePh2 The phospha-germa-cyclobutanes 1,2-di-tert-butyl-3,3,4,4-tetraphenyl-1,2-diphospha-3,4-digerma-cyclob utane, (t-BuP)2(GePh2)2 ( 1 ), and 1,2,3-tri-tert-butyl-4,4-diphenyl-1,2,3-tri-phospha-4-germa-cyclobutan e, (t-BuP)3GePh2 ( 2 ), are obtained as main-products of the cyclocondensation of K(t-Bu)P? P(t-Bu)K with Ph2GeCl2 under certain reaction conditions. 1 and 2 could be isolated in the pure state and were clearly characterized as the first four-membered P2Ge2 and P3Ge heterocycles, respectively.  相似文献   

2.
Structural Chemistry of Phosphorus Containing Chains and Rings. 7. Molecular and Crystal Structure of the Diphosphagermetane (t-BuP)2(GePh2)2 The compound 1,2-di-tert-butyl-3,3,4,4-tetraphenyl-diphospha-3,4-digerma-cyclobutan, (t-BuP)2(GePh2)2, crystallizes monoclinically in the space group P21/c with a = 996.8 pm, b = 1337.3 pm, c = 2403.4 pm, β = 92.66° and Z = 4 formula units. The main structural feature is a non-planar four-membered ring. The (average) bond lengths are d(Ge? Ge) = 242.1 pm, d(Ge? P) = 234.0 pm, d(P? P) = 221.6 pm, d(Ge? C) = 194.9 pm, d(P? C) = 188.tyl4 pm, d(C? C)Ph = 136.l5 pm, d(C? C)t-Bu = 151.8 pm, d(C? H)Ph = 91 pm, d(C? H)t-Bu ? 95 pm. The geometry of the substituents phenyl and tert-butyl is quite normal.  相似文献   

3.
Contributions to the Chemistry of Phosphorus. 101 Synthesis and Properties of Diphosphaboriranes (t-BuP)2BNR2 and (t-BuP)2BNR1R2 The reaction of K(t-Bu)P? P(t-Bu)K with diorganylaminodichloroboranes under suitable conditions leads to the new 1,2-di-tert-butyl-3-diorganylamino-1,2,3-diphosphaboriranes (-1,2-diphospha-3-boracyclopropanes) (t-BuP)2BNR2 ( 2 , 7 ) and (t-BuP)2BNR1R2 ( 3 — 6 ), respectively. The P2B three-membered heterocycles 2 — 5 can be isolated in good yields. They are relatively stable against dimerization to the corresponding phosphorus boron six-membered ring compounds with opposite boron atoms. The rate of dimerization depends on steric and electronic influences of the substituents at the three-membered ring. All NMR spectroscopic results are only consistent with a structure in which the B and N atoms show planar coordination and are connected by a partial double bond.  相似文献   

4.
Contributions to the Chemistry of Phosphorus. 144. Synthesis and Properties of the Hexaphospha-3-germaspiro[2.4]heptane (t-BuP)2Ge(t-BuP)4 The cyclocondensation of K(t-Bu)P? P(t-Bu)K with germanium tetrachloride in the molar ratio of 2:1 yields the novel spirocyclic compound 1,2,4,5,6,7-hexa-tert-butyl-1,2,4,5,6,7-hexaphospha-3-germaspiro[2.4]heptane, (t-BuP)2Ge(t-BuP)4 ( 1 ). Besides considerable amounts of (t-BuP)4 are formed and occasionally some (t-BuP)3 can be found. 1 could be isolated in the pure state and has been NMR-spectroscopically characterized as a spirocyclic compound with a P2GeP4 skeleton.  相似文献   

5.
Contributions to the Chemistry of Phosphorus. 106. Synthesis and Properties of the Diphosphacyclopropane (t-BuP)2CHMe The new 1,2-di-tert-butyl-3-methyl-1,2-diphosphacyclopropane (1,2-di-tert-butyl-3-methyl-diphosphirane), (t-BuP)2CHMe ( 1 ), is obtained by reacting K(t-Bu)P? P(t-Bu)K with 1,1-dichloroethane under suitable conditions. 1 can be isolated by high vacuum distillation and is stable for months when stored under inert gas at room temperature. Particularly, no dimerization to the corresponding 1,2,4,5-tetraphosphacyclohexane takes place. The NMR parameters indicate an increase of the exocyclic bond angles compared to (t-BuP)2CH2. The signs of all CP coupling constants have been determined by spin tickling experiments. The 2J(CCP)-coupling of the methyl group at the ring carbon depends strongly on the dihedral angle.  相似文献   

6.
Contributions to the Chemistry of Phosphorus. 128. Synthesis of the Diphosphastanna-cyclopropane (t-BuP)2Sn(t-Bu)2 The first three-membered P2Sn heterocycle, 1,2,3,3-tetra-tert-butyl-1,2,3-diphosphastanna-cyclopropane (1,2,3,3-tetra-tert-butyl-1,2,3-diphosphastannirane) ( 1 ), has been synthesized by [2+1] cyclocondensation of K(t-Bu)P—P(t-Bu)K with (t-Bu)2SnCl2. 1 is stable at room temperature. Besides, (t-BuP)2[Sn(t-Bu)2]2 ( 2 ), (t-BuP)4Sn(t-Bu)2 ( 3 ), and (t-BuP)4 are formed. In the reaction with Et2SnCl2, the six-membered ring compound [(t-BuP)2SnEt2]2 ( 4 ) is the main-product; the four- and five-membered cyclostannaphosphanes (t-BuP)3SnEt2 ( 5 ) and (t-BuP)3(SnEt2)2 ( 6 ) are also formed. 1 could be isolated in the pure state and has been unambiguously characterized as a three-membered heterocycle with a P2Sn skeleton. The 31P-NMR parameters of the other new cyclostannaphosphanes 2–6 are reported.  相似文献   

7.
Contributions to the Chemistry of Phosphorus. 160. About the Ring Cleavage of the Phosphorus Three-Membered Heterocycles (t-BuP)2CMe2 and (t-BuP)2N(i-Pr) with Potassium or K-Naphthalenide The reaction of (t-BuP)2CMe2 with potassium or K-naphthalenide in tetrahydrofuran or 1,2-dimethoxyethane mainly leads to the symmetric phosphide K(t-Bu)P? ;CMe2? ;P(t-Bu)K ( 1 ) via P? ;P-bond cleavage. Above —78°C 1 decomposes into the monophosphides KHP(t-Bu) ( 3 ) and KP(t-Bu)(i-Pr) ( 4 ). In the case of (t-BuP)2N(i-Pr) under analogous conditions essentially the P? ;N-bond is split up yielding the phosphide K(t-Bu)P? ;P(t-Bu)? ;NH(i-Pr) ( 5 ), which is stable at room temperature. Contrary to (t-BuP)2BN(i-Pr)2 cyclic phosphides are not formed. The different reactive behavior in the metalation of phosphorus three-membered heterocycles of the type (PR1)2ER (E = hetero atom) is discussed.  相似文献   

8.
Contributions to the Chemistry of Phosphorus. 138. P5(t-Bu)4H — the First Derivative of iso-P5H5 The thermolysis of 1,2-di-tert-butyldiphosphane, H(t-Bu)P? P(t-Bu)H, yields under suitable conditions the compound P5(t-Bu)4H ( 1 ) as the main product. Besides, the tert-butylphosphanes t-BuPH2, P6(t-Bu)5H ( 2 ), H2(t-BuP)3, and (t-BuP)4 are formed. 1 has been isolated in the pure state and structurally characterized as 1-(tert-butylphosphino)-2,3,4-tri-tert-butyl-cyclotetraphosphane. Hence, compound 1 is a derivative of iso-P5H5 with a branched phosphorus skeleton built up by a four-membered ring and a phosphorus side chain.  相似文献   

9.
Contributions to the Chemistry of Phosphorus. 142. P6(t-Bu)5H – the First Cyclotetraphosphane with a P2 Side Chain The thermolysis of 1, 2-di-tert-butyldiphosphane, H(t-Bu)P? P(t-Bu)H, leads to formation of the hitherto unknown hexaphosphane P6(t-Bu)5H ( 1 ). In the first instance the iso-P5H5 derivative P5(t-Bu)4H [3] is formed, which reacts further with H2(t-BuP)2 or H2(t-BuP)3 yielding 1 . Compound 1 has been isolated in the pure state and structurally characterized as 1-(1,2-di-tert-butyldiphosphino)-2, 3, 4-tri-tert-butyl-cyclotetraphosphane, i. e. as a four-membered ring compound with a P2 side chain. Due to the chirality of the P atoms in the side chain, 1 exists as a mixture of two configurational isomers, the threo-and the erythro-form.  相似文献   

10.
Contributions to the Chemistry of Phosphorus. 224. On the Thermolysis of 1,2-Di-tert-butyldiphosphane, 1,2,3-Tri-tert-butyltriphosphane, and Tetra-tert-butylcyclotetraphosphane On disproportionation of 1,2-di-tert-butyldiphosphane, H(t-Bu)P? P(t-Bu)H (1) , 1,2,3-tri-tert-butyltriphosphane, H2(t-BuP)3 (2) , is formed which reacts further at temperatures above 100°C to give 1-(tert-butylphosphino)-2,3,4-tri-tert-butylcyclotetraphosphan, P5(t-Bu)4H (4) . Compound 4 reacts with 1 or 2 with lengthening of the P-sidechain to furnish the corresponding 1-(1,2-di-tert-butyldiphosphino)-2,3,4-tri-tert-butylcyclotetraphosphane, P6(t-Bu)5H (5) . At temperatures above 170°C, 5 disproportionates into the tetra-tert-butylcyclotetraphosphane, (t-BuP)4 (3) which is stable up to about 200°C, and the bicyclo[3.1.0]hexaphosphane P6(t-Bu)4 from which the polycyclophosphanes P9(t-Bu)3 and P8(t-Bu)6 arise during the further course of the thermolysis. These products are finally converted through even more phosphorus-rich and more highly condensed t-butylcyclophosphanes into elemental phosphorus. In each reaction step, varying amounts of the monophosphane derivatives t-BuPH2, (t-Bu)2PH, and (t-Bu)3P are formed. The proposed course of the reaction is further substantiated by the pyrolysis products of pure 2 and 3 .  相似文献   

11.
Contributions tot he Chemistry of Phosphorus. 148. Synthesis and Properties of the 1,2-Diphospha-3,4-diboretane (t-BuP)2(BNMe2)2 The first 1, 2-diphospha-3,4-diboretane (1,2-diphospha-3, 4-diboracyclobutane) (t-BuP)2(BNMe2)(1) was prepared by [2+2] cyclocondensation of K(t-Bu)P? P(t-Bu)K with Cl(Me2N)B? B(NMe2)Cl. 1 could be isolated in the pure state and was NMR spectroscopically characterized as a compound with a planar P2 B2 ring skeleton.  相似文献   

12.
Structural Chemistry of Phosphorus-containing Chains and Rings. 1. Crystal Structure of the Diphosphasilirane (t-BuP)2SiPh2 The three-membered P2Si-heterocycle 1, 2-di-tert-butyl-3, 3-diphenyl-1, 2, 3-diphosphasilirane (t-BuP)2SiPh2 crystallizes monoclinic in the space group P21 with a = 1041.2 pm, b = 882.3 pm, c = 1158.1 pm, β = 91.33° and Z = 2 formula units. A special structural feature is the regular triangle built up by two P and one Si. Therefore the endocyclic bond angle at Si is as low as 60°. The average bond lengths are P? P = 222.6 pm, P? Si = 222.5 pm, P? C = 190.8 pm, Si? C = 186.6 pm, (C? C )ph = 139.0 pm, ( C? C )t-Bu = 151.7 pm. The geometry of the substituents phenyl and tert-butyl is quite normal, the last ones are slightly disordered.  相似文献   

13.
Structural Chemistry of Phosphorus-containing Chains and Rings. 2. Crystal and Molecular Structure of the Diphosphaborirane (t-BuP)2BNEt2 The three-membered P2B-heterocycles 1,2-di-tert-butyl-3-diethylamino-1,2,3-diphosphaborirane, (t-BuP)2BNEt2, crystallizes triclinic in the space group P1 with a = 935.5 pm, b = 985.4 pm, c = 987.4 pm,α = 81.55°, β = 89.40°, γ =69.07°, and Z = 2 formula units. The main structural feature is a short B? N-bond length (138.2 pm) inside a plane P2BN-group. The endocyclic bond angles are 54.0° on phosphorus and 72.0° on boron. The (average) bond lengths are P? P = 222.5 pm, P? C = 189.5 pm, P? B = 189.3 pm, B? N = 138.2 pm, N? C = 147.2 pm, C? C = 152.6 pm, and C? H = 98 pm. The geometry of the substituents ethyl and tert-butyl is quite normal.  相似文献   

14.
Contributions to the Chemistry of Phosphorus. 104. Synthesis and Properties of 1,3-Dihalogen-1,2,3-tri-tert-butyltriphosphanes (t-BuP)3X2, X = Cl, Br, I The halogenating ring-cleavage of tri-tert-butyl-cyclotriphosphane, (t-BuP)3, by iodine, bromine or phosphorus(V)bromide as well as phosphorus(V)chloride leads to the first 1,3-dihalogen-1,2,3-triorganyltriphosphanes (t-BuP)3I2 ( 1 ), (t-BuP)3Br2 ( 2 ), and (t-BuP)3Cl2 ( 3 ). The 1,2-dihalogen-1,2-di-tert-butyldiphosphanes (t-BuP)2I2 ( 4 ), (t-BuP)2Br2 ( 6 ), and (t-BuP)2Cl2 ( 9 ) as well as the dihalogen-tert-butylphosphanes t-BuPI2 ( 5 ), t-BuPBr2 ( 7 ), and t-BuPCl2 ( 10 ) are formed as by-products. Moreover, the reaction of (t-BuP)3 with PBr5 leads to 1-bromo-2,3,4-tri-tert-butyl-cyclo-tetraphosphane, (t-BuP)3(PBr) ( 8 ). The compounds 1 and 3 could be isolated in a pure state and were characterized in all details. 3 is a reMarkably stable open-chain triphosphane.  相似文献   

15.
Contributions to the Chemistry of Phosphorus. 134. On the Triphosphanes H(t-BuP)3H' Li(t-BuP)3Li, and Me3Si(t-BuP)3SiMe3 The reaction of 1,3-diiodo-1,2,3-tri-tert-butyltriphosphane, I(t-BuP)3I, with lithium aluminium hydride leads to 1,2,3-tri-tert-butyltriphosphane, H(t-BuP)3H ( 1 ). 1 reacts with n-butyllithium to 1,3-dilithium-1,2,3-tri-tert-butyltriphosphide, Li(t-BuP)3Li ( 2 ), which reacts further with trimethylchlorosilane yielding 1,3-bis(trimethylsilyl)-1,2,3-tri-tert-butyltriphosphane, Me3Si(t-BuP)3SiMe3 ( 3 ). The triphosphanes 1, 2 and 3 could be isolated in a pure state. In solution 1 forms the threo, threo and the threo,erythro configurated diastereomers 1a and 1b in a ratio of about 2:1. 3 predominantly exists in form of the threo,erythro configurated diastereomer 3b by steric reasons.  相似文献   

16.
Contributions to the Chemistry of Phosphorus. 152. Functionalized Cyclotriphosphanes of the Type (t-BuP)2PX (X = K, SiMe3, SnMe3, Cl, Br, PCl2, P(t-Bu)Cl, P(t-Bu)I) Functionalized cyclotriphosphanes of the type (t-BuP)2PX with electropositive or electronegative substituents X have been prepared on various synthetic routes: KP(t-BuP)2 ( 1 ) can be obtained in 50–55 per cent purity by reacting (t-BuP)4 or (t-BuP)3 with potassium. Reaction of 1 with Me3SiCl or Me3SnCl leads to the cyclotriphosphanes (t-BuP)2PSiMe3 ( 2 ) and (t-BuP)2PSnMe3 ( 3 ), respectively; the cyclocondensation of Cl(t-Bu)P? P(t-Bu)Cl with P(SnMe3)3, however, is more convenient for the preparation of 3 . In a similar way the halogenated compounds (t-BuP)2PCl ( 4 ) and (t-BuP)2PBr ( 5 ) can be obtained from Me3Sn(t-Bu)P? P(t-Bu)SnMe3 ( 6 ) and PX3 (X = Cl, Br). The phosphino-substituted cyclotriphosphanes (t-BuP)2P? PCl2 ( 7 ), (t-BuP)2P? P(t-Bu)Cl ( 8 ), and (t-BuP)2P? P(t-Bu)I ( 9 ) are accessible by the reaction of 3 with PCl3 and t-BuPX2 (X = Cl, I), respectively. 2–9 could be obtained free from phosphorus-containing by-products and were 31P-NMR spectroscopically characterized as compounds with a cyclic P3 skeleton.  相似文献   

17.
Contributions to the Chemistry of Phosphorus. 136. 31P-N.M.R. Spectra and Structure of 1,3-Dihalogen-1,2,3-tri-tert-butyltriphosphanes X(t-BuP)3X, X = Cl, Br, I The 1,3-dihalogen-1,2,3-tri-tert-butyltriphosphanes (t-BuP)3Cl2 ( 1 ), (t-BuP)3Br2 ( 2 ), and (t-BuP)3I2 ( 3 ), which are formed in the halogenating ring cleavage of tri-tert-butyl-cyclotriphosphane, (t-BuP)3, by halogens or halogen compounds, favour the erythro, threo configuration by steric reasons. However, the erythro, erythro configurated diastereomer, whose stability depends on the size of the halogen substituents and on the rate of inversion at the phosphorus atoms, is formed initially. The reaction of the erythro, erythro and erythro, threo configurated diastereomers of 1–3 with lithium aluminium hydride leads stereospecifically to the threo, threo and threo, erythro configurated diastereomers of 1,2,3-tri-tert-butyltriphosphane, H2(t-BuP)3 ( 4 ), respectively.  相似文献   

18.
Contributions to the Chemistry of Phosphorus. 159. On the Reaction of the Diphosphaborirane (t-BuP)2BN(i-Pr)2 with Potassium or Potassium Naphthalenide The reaction of (t-BuP)2BN(i-Pr)2 with potassium or K-naphthalenide in tetrahydrofuran leads to K(t-Bu)P? ;BN(i-Pr)2? P(t-Bu)K ( 1 ) via P? ;P bond cleavage of the three-membered ring skeleton. Above ? 78°C 1 changes into the asymmetric compound K(t-Bu)P? ;P(t-Bu)? BHN(i-Pr)2 ( 2 ). In dimethoxyethane additionally the monometallated diphosphaborirane K(t-Bu)P2BN(i-Pr)2 ( 3 ) is formed. 1 and 3 , which could be isolated free from other phosphorus containing compounds, as well as the corresponding silylphosphanes Me3Si(t-Bu)P? ;BN(i-Pr)2? ;P(t-Bu)SiMe 3 ( 4 ) and Me3Si(t-Bu)P2BN(i-Pr)2 ( 5 ) were characterized by NMR spectroscopy. Protolysis of 3 or 5 leads to a decomposition of the three-membered ring skeleton with formation of H(t-Bu)P? ;PH2.  相似文献   

19.
Oxidation of 3,4-di-tert-butyl-8-methyl-1,4-dihydropyrazolo[5,1-c][1,2,4]triazine with NBS/K2CO3 furnished 3,4-di-tert-butyl-8-methylpyrazolo[5,1-c][1,2,4]triazine, a mildly strained heteroaromatic compound. X-Ray single crystal diffraction analysis indicated that the conjugated 1,2,4-triazine ring adopts a twist-boat configuration, while the two t-Bu substituents are located on the opposite sides of the azole plane. The related 3-tert-butyl-4-(o-C-carboranyl)-8-methyl-1,4-dihydropyrazolo[5,1-c][1,2,4]triazine was also synthesized, however, its oxidative aromatization was unsuccessful.  相似文献   

20.
Contributions to the Chemistry of Phosphorus. 111. 1,2-Dichloro-1,2-di-tert-butyl-diphosphane The reaction of tri-tert-butyl-cyclotriphosphane, (t-BuP)3, with phosphorus(V) chloride (molar ratio 1:2) leads to the title compound Cl(t-Bu)P? P(t-Bu)Cl ( 1 ), which is remarkably stable against disproportionation reactions. As the first 1,2-dichloro-1,2-diorganyldiphosphane, 1 has been isolated in a pure state and was thoroughly characterized. At room temperature, 1 exists in a mixture of the d,l and meso form (about 20:80). The mutual repulsion of the negative polarized Cl atoms and their preferred gauche arrangement to the free electron pairs of neighboured P atoms leads to a gauche-conformation of the lone electron pairs in the d,l- and to a trans-conformation in the meso-configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号