首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diorganotin(IV) and triorganotin(IV) derivatives R2SnA (R = Me, n-Pr, n-Bu, n-Oct) and (R3Sn)2A [R = Me, Ph, cyclohexyl (Cyh); A = an anion of diphenic acid] have been prepared and characterized by elemental analysis, IR, 1H and 13C NMR spectroscopies. Tetrahedral tin forms a part of a diphenate cyclic ring in the diorganotin complexes with unidentate carboxylates, which have further been used for the synthesis of cyclic acid anhydrides. The soluble dinuclear triorganotin complexes (Me, Ph) possess symmetrically bonded carboxylates while the less soluble compound (Cyh3Sn)2A has two asymmetrically bonded carboxylates. All have a trigonal bipyramidal structure with R3Sn units remote from each other.  相似文献   

2.
Diorganotin(IV) and diorganosilicon(IV) derivatives of the types R2MCl(TSCZ) and R2M(TSCZ)2 (where TSCZ is the anion of a thiosemicarbazone ligand, R=Ph or Me and M=Sn or Si) have been synthesized and characterized by elemental analyses, molecular weight determinations and conductivity measurements. The mode of bonding has been established on the basis of IR and 1H, 13C 29Si and 119Sn NMR spectroscopic studies. Some of the representative complexes have also been evaluated for their antimicrobial effects on different species of pathogenic fungi and bacteria in vivoas well as in vitro.The results of these investigations are reported. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
The di- and trialkyltin(IV) complexes of composition R2SnCl2−x (OAr), and n-Bu3Sn(OAr) (R = n-Bu and Me; x = 1 and 2; OAr = OC6H3Bu t -2-Me-4) have been synthesized by the reactions of di-n-butyl and dimethyltin dichlorides and tri-n-butyltin(IV) chloride with 2-tert-butyl-4-methylphenol and triethylamine in tetrahydrofuran. The reaction of triphenyltin chloride with trimethylsilyl-2-t-butyl-4-methylphenoxide in the same solvent however, gives a complex of composition Ph3Sn(OAr). The complexes have been characterized by microanalyses, molar conductance measurements, molecular weight determinations and IR and 1H, 13C and 119Sn NMR and mass spectral studies. Thermal behaviour of the complexes has been studied by TGA and DTA techniques. From the non-isothermal TG data, the kinetic and thermodynamic parameters have been calculated employing Coats-Redfern equation and the mechanism of decomposition has been computed using non-isothermal kinetic method. Thermal investigations on the blends of poly(methylmethacrylate). PMMA, with organotin(IV)-2-tert-butyl-4-methylphenoxides have shown increased thermal stability compared to pure PMMA suggesting thereby their potential as additives towards PMMA.  相似文献   

4.
A brief account is given of the synthesis and stereochemistry and the antibacterial, antifungal, nematicidal and insecticidal behaviour of organosilicon(IV) and organotin(IV) complexes of a biologically potent ligand, 2‐acetylfuransulfaguanidine. The unimolar and bimolar substitution products have been characterized by elemental analyses, conductance measurements, molecular weight determinations, and spectral studies, viz. IR, 1H NMR, 13C NMR, UV, 29Si NMR and 119Sn NMR spectra. The data support the binding of the nitrogen atom to the metal atom in R3M(NN), [R2M(NN)2 and R2M(NN)Cl [(R = Me/Ph and M = Si(IV) and Sn(IV)] types of complex. Based on these studies, with coordination number five and six a trigonal bipyramidal and an octahedral geometry have been proposed for the resulting derivatives. The free ligand (NNH) and its respective metal complexes were tested in vitro against a number of microorganisms to assess their antimicrobial properties. The results are indeed positive. In addition to these studies, the complexes also show good nematicidal and insecticidal properties. The results of these findings have been discussed in detail. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Four new organotin(IV) complexes with 2-hydroxynaphthaldehyde-N(4)-ethylthiosemicarbazone [(H2DNET), (1)] of the type [MeSnCl(DNET] (2), [BuSnCl(DNET)] (3), [PhSnCl(DNET)] (4), and [Ph2Sn(DNET] (5) have been synthesized by the direct reaction of H2DNET (1) with organotin(IV) chloride(s) in the presence of potassium hydroxide in absolute methanol. All the compounds were characterized by elemental analyses, molar conductivity, UV-Vis, IR, 1H, 13C, and 119Sn NMR spectral studies. The molecular structure of ligand (1) has been confirmed by X-ray single crystal diffraction. Spectroscopic data clearly suggested that Sn(IV) center is coordinated with the ONS tridentate ligand (H2DNET) and exhibits a five-coordinate geometry in solution. Antibacterial studies were carried out in vitro against four bacterial strains. All organotin(IV) compounds (2–5) showed good activity against various bacteria but lower activity than the reference drug (Ciprofloxacin). The results demonstrate that organic groups attached to tin(IV) moiety have significant effect on their biological activities. Among them, diphenyltin(IV) derivative 5 exhibits significantly good activity than the other organotin(IV) derivatives (2–4).  相似文献   

6.
The synthesis, spectroscopy, and antitumor behavior of organotin(IV) complexes of 2,3-methylenedioxyphenylpropenoic acid are described. The spectroscopic data indicate 1 : 2 and 1 : 1 metal to ligand stoichiometry in case of di- and trioganotin(IV) compounds and hypervalency of Sn(IV) in trigonal bipyramidal and octahedral modes. Mass spectrometric and elemental analysis data support the solid and solution spectroscopic results. The complexes have been evaluated in vitro against crown gall tumor and bio-activity screenings showed in vitro biological potential. The nature of covalent attachments (methyl, ethyl, n-butyl, phenyl, and n-octyl) of Sn(IV) played a decisive role for bioactivity. All the compounds have been studied in solution by NMR (1H, 13C) and also in solid state using FTIR, mass spectrometry, and by X-ray crystallography. The molecular structure of Et2Sn(IV) and Me3Sn(IV) derivatives confirm the behavior of di- and tri-organotin(IV) compounds in solid state. Mono-organotin derivatives are octahedral both in solid and solution.  相似文献   

7.
Equimolar reactions of BuSn(OPri)3 with diethanolamines, RN(CH2CH2 OH) 2 (abbreviated as RdeaH2, where R = H or Me), afford dimeric isopropoxo-bridged six-coordinate butyltin(IV) complexes [{Bu(η3-Rdea)Sn(μ-OPri)}2] (R = H ( 1 ), Me ( 2 )). Interactions between BuSn(OPri)3 and diethanolamines (RdeaH2) in a 1:2 molar ratio yield monomeric derivatives of the type [BuSn(Rdea)(RdeaH)] (R = H ( 3 ), R = Me ( 4 )). These homometallic complexes on 1:1 reactions with an appropriate metal alkoxide form monomeric heterobimetallic complexes of the type [BuSn (Rdea)2 {M(OR′)n}] (R = H, M = Al, R′ = Pri, n = 2 ( 5 ); R = H, M = Ti, R = Pri, n = 3 ( 6 ); R = H, M = Zr, R′ = Pri, n = 3 ( 7 ); R = Me, M = Al, R′ = Pri, n = 2 ( 8 ); R = Me, M = Ti, R′ = Pri, n = 3 ( 9 ); R = Me, M = Ge, R′ = Et, n = 3 ( 10 )). The driving force behind this work was (i) to explore the utility of homometal complexes ( 1 ) ( 4 ) in assembling a metal alkoxide fragment via a condensation reaction and (ii) to gain insights into the structures of new compounds by NMR spectral data. All of these derivatives have been characterized by elemental analysis, spectroscopic (IR, NMR; 1H, 27Al, and 119Sn) studies, and molecular weight measurements. 119Sn NMR spectral studies indicate that both the homometallic ( 3 ) and ( 4 ) and heterobimetallic ( 5 ) ( 9 ) complexes exist in a solution in an equilibrium of six- and five-coordinated tin(IV) species.  相似文献   

8.
The diorganotin(IV) complexes, [R2Sn(Rd)(μ-OH)]2 (R?=?Me (1), PhCH2 (2), n-Bu (3), Ph (4); HRd?=?rhodanine), have been synthesized and characterized by IR and multinuclear (1H, 13C, 119Sn) NMR spectroscopy. The structures of complexes 2 and 3 have been determined by single-crystal X-ray diffraction. Both crystal structures of 2 and 3 show the presence of asymmetrically bridging hydroxy groups leading to an Sn2O2 unit. Each atom in complex 1 is also coordinated by an N atom of ligand and two C atoms of the alkyl groups, so the Sn environment is based on a trigonal bipyramid. While in complex 2, a weak intermolecular Sn–O interaction has also been found between the two adjacent molecules, so the geometry of the Sn atom can be best described as six-coordinate octahedral. The salient feature of the supramolecular structure of complex 3 is that of a 1D polymer, in which the discrete molecules are connected through weak intermolecular Sn?···?O interactions.  相似文献   

9.
Four diorganotin(IV) complexes [(Me)2Sn(L1)(CH3COO)]·CH3CH2OH (1), [(Ph)2Sn(L1)(CH3COO)]·CH3CH2OH (2), [(Me)2Sn(L2)Cl] (3) and [(Ph)2Sn(L2)(CH3COO)] (4) where HL1 = 2-benzoylpyridine N(4)-phenylthiosemicarbazone and HL2 = 2-acetylpyrazine N(4)-phenylthiosemicarbazone have been synthesized and characterized by elemental analysis, IR MS, 1H NMR and single-crystal X-ray diffraction studies. Schiff bases in their deprotonated forms coordinate to tin(IV) via pyridine/pyrazine nitrogen atom and the nitrogen atom and sulfur atoms of the thiosemicarbazone moiety. The tin atom is seven-coordinated in 1, 2 and 4 containing one acetato group, respectively, and six-coordinated in 3 containing one chloride ion. Biological studies, carried out in vitro against selected bacteria and K562 leukaemia cells, respectively, have shown that different substituted groups attached at the thiosemicarbazone moieties and different diorganotin(IV) groups showed distinctive differences in the biological property.  相似文献   

10.
Summary The chromatographic behaviour of 49 metal ions has been studied on papers impregnated with Sn(IV) and Ti(IV) antimonates in aqueous HNO3 and mixed solvent systems containing dimethyl sulphoxide. Numerous separations have been achieved and the Alberti equation, for Sn(IV) and Ti(IV) antimonate papers, in the modified form: –nloga K+=RM + constant (a K+=activity of K+), has been verified. The effect of the concentration of impregnating reagents on these papers has been determined and compared with other papers. The effect of pH on Rf, Ri, log Rf and RM values of metal ions has also been examined in aqueous systems.  相似文献   

11.
Four new tin(IV)/organotin(IV) complexes, [SnCl3(BPCT)] (2), [MeSnCl2(BPCT)] (3), [Me2SnCl(BPCT)] (4), and [Ph2SnCl(BPCT)] (5), have been synthesized by the direct reaction of 2-benzoylpyridine-N(4)-cyclohexylthiosemicarbazone [HBPCT, (1)] and stannic chloride/organotin(IV) chloride(s) in absolute methanol under purified nitrogen. HBPCT and its tin(IV)/organotin(IV) complexes (25) were characterized by CHN analyses, molar conductivity, UV-Vis, FT-IR, and 1H NMR spectral studies. In all the complexes, tin(IV) was coordinated via pyridine-N, azomethine-N, and thiolato-S from 1. The molecular structure of 2 has been determined by X-ray single-crystal diffraction analysis. Complex 2 is a monomer and the central tin(IV) is six-coordinate in a distorted octahedral geometry. The crystal system of 2 is monoclinic with space group P121/n1 and the unit cell dimensions are a?=?8.3564(3)?Å, b?=?23.1321(8)?Å, c?=?11.9984(4)?Å.  相似文献   

12.
Tribenzyl tin(IV) chloride complexes of morpholine N-thiohydrazide (L1), aniline-N-thiohydrazide (L2),N-(morpholine-N-thio)-1,3-propanediamine (L3) and (aniline-N-thio)-1,3-propanediamine (L4) of the type (C6H5CH2)3Sn(L)Cl (where L=L1, L2, L3 and L4) have been synthesised in dioxane and in H2O and acetone mixture. These were characterized by C,H,N-analysis, UV, IR and 1HNMR spectral studies. In both the complexes ligands act as bidentate, coordinating through sulphur and terminal nitrogen. The complexes are 1:1 metal ligand complexes. Various thermodynamic parameters have been calculated for the decomposition steps using TG/DTA curves in air as well as nitrogen atmosphere. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
《印度化学会志》2023,100(3):100945
The new dibutyltin(IV) complexes of Schiff bases is designed & synthesis from the interaction between various substituted amines and aromatic aldehyde with general formula Bu2Sn(L1-7)2Cl2. Where L1: (E)-4-chloro-N-(thiophen-2-ylmethylene) aniline; L2: (E)-2-chloro-N-(3,4,5-trimethoxybenzylidene) aniline; L3: (E)-N-((1H-indol-3-yl) methylene)-4-chloro-2-nitroaniline; L4: (E)-4-nitro-N-(3,4,5-trimethoxybenzylidene) aniline; L5: (E)-N-(3,4,5-trimethoxybenzylidene) aniline; L6: (E)-4-nitro-N-(thiophen-3-ylmethylene) aniline; L7: (E)-4-chloro-2-nitro-N-(pyridin-3-ylmethylene) aniline. Analytical and spectroscopic methods, such as molar conductance measurement, UV–Vis, IR, NMR, and DFT studies, have been used to describe newly synthesised compounds. The DFT studies have also provided confirmation regarding the complexes' geometry. The results of the Tauc equation indicate that the fundamental band gap of the compound [Bu2Sn(L5)2Cl2] is 2.670 eV, which is in agreement with the findings of DFT studies, which indicate that the band gap is 2.657 eV. The bactericidal effects of Schiff bases and their dibutyltin(IV) complexes were tested. The antibacterial activity of organotin(IV) complexes is enhanced in comparison to that of the free ligands.  相似文献   

14.
New organotin(IV) complexes with empirical formula Sn(SNNNS)R2, where SNNNS is the dianionic form of 2,6-diacetylpyridine Schiff bases of S-methyldithiocarbazate (H2dapsme) or S-benzyldithiocarbazate (H2dapsbz) and R = Ph or Me, have been prepared and characterized by IR, UV-Vis, NMR and Mössbauer spectroscopic techniques and conductance measurements. The molecular structures of the Sn(dapsme)R2 (R = Ph and Me) have been determined by single crystal X-ray diffraction techniques. Both complexes have a distorted pentagonal-bipyramidal geometry in which the tin is coordinated by a dinegatively charged pentadentate chelating agent via pyridine nitrogen, two azomethine nitrogens, and two thiolate sulfurs. The five donors (N3S2) provided by the Schiff base occupy the equatorial plane close to a pentagonal planar array while the carbanion ligands occupy axial sites.  相似文献   

15.
Triorganotin(IV) complexes of the 7-amino-2-(methylthio)[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylic acid (HL), Me3SnL(H2O), (1), [n-Bu3SnL]2(H2O), (2), Ph3SnL(MeOH), (3), were synthesized by reacting the amino acid with organotin(IV) hydroxides or oxides in refluxing methanol. The complexes have been characterized by elemental analysis, 1H, 13C and 119Sn NMR, IR, Raman and 119Sn Mössbauer spectroscopic techniques. Single crystal X-ray diffraction data were obtained for compounds (2) and (3). Ph3SnL(MeOH) presents a trigonal bipyramidal structure with the organic groups on the equatorial plane and the axial positions occupied by a ligand molecule, coordinated to tin through the carboxylate, and a solvent molecule, MeOH. A similar structure is proposed for Me3SnL(H2O) on the basis of analytical and spectroscopic data. The tributyltin(IV) derivative, [n-Bu3SnL]2(H2O), is characterized by two different tin sites with similar tbp geometry featured by butyl groups on the equatorial plane. Sn(1) and Sn(2) atoms are axially bridged by a ligand molecule binding through the N(4) and the carboxylate group; the two coordination spheres are saturated by another ligand molecule, binding the metal through the carboxylate group, and a water molecule, respectively. Antimicrobial tests on compounds 1 and 2 showed in vitro activity against Gram-positive bacteria.  相似文献   

16.
The complexes of piperidine dithiocarbamate, 2-aminopyridine dithiocarbamate and organotin(IV) of the type R3Sn(L1), R2Sn(L1)2, R3Sn(L2), R2Sn(L2)2, [R=C6H5CH2 (benzyl), p-ClC6H4CH2 (p-chlorobenzyl), L 1=sodium piperidine dithiocarbamate and L 2=sodium 2-aminopyridine dithiocarbamate] have been synthesised and characterised by spectral studies (IR, UV, 1H NMR). Thermogravimetric (TG) and differential thermal analytical (DTA) studies have beeen carried out for these complexes and from the TG curves, the order and apparent activation energy for the thermal decomposition reactions have been elucidated. The various thermal studies have been correlated with some structural aspects of the complexes concerned. From DTA curves, the heat of reaction has been calculated.  相似文献   

17.
Two dibenzyltin(IV) complexes with thiobenzoate ligand, (PhCH2)2Sn(SOCPh)2 (1) and (PhCH2)2Sn(C1)SOCPh (2), have been synthesized by the reaction of dibenzyltin(IV) dichloride with thiobenzoic acid in the presence of organic base Et3N and characterized by IR, ^1H NMR spectroscopy and elemental analysis. Their crystal structures were determined by X-ray single crystal diffraction analysis. In the crystals of 1, the tin atom is six-coordinated in a distorted octahedron configuration. In the crystals of 2, the molecular packing in unit cell reveals that the two adjacent molecules are symmetrically linked to each other to form a dimer with intermolecular Sn…C1 distances of 0.3591 (2) nm and the tin atom is five-coordinated in a distorted trigonal bipyramid configuration.  相似文献   

18.
Three new diorganotin(IV) complexes, [Me2Sn(BDET] (2), [Bu2Sn(BDET)] (3), and [Ph2Sn(BDET)] (4), were synthesized by reacting R2SnCl2 (R = Me, Bu, and Ph) with 5-bromo-2-hydroxybenzaldehyde-N(4)-ethylthiosemicarbazone [H2BDET, (1)] in the presence of KOH in absolute methanol. The newly synthesized complexes were characterized by elemental analysis, molar conductivity, UV–vis, FT-IR, 1H, 13C, and 119Sn NMR spectroscopies. The molecular structure of 4 was confirmed by X-ray crystallography. X-ray crystallography revealed that the doubly deprotonated O,N,S-tridentate thiosemicarbazone coordinates to tin(IV), resulting in a distorted trigonal bipyramidal geometry. Their 1H, 13C, and 119Sn NMR spectra support a five-coordinate tin(IV) in solution for all complexes, in accord with the solid-state X-ray structure determined for 4. Compounds 14 were evaluated for their antibacterial activities against Staphylococcus aureus, Enterobacter aerogenes, Escherichia coli, and Salmonella typhi. The results exhibited that 24 were active with comparable potency compared to the standard drug. Antibacterial studies also indicated that the complexes have potential for biological evaluation.  相似文献   

19.
New triphenyltin(IV) hydroxamate complexes, [Ph3Sn(4-NO2CnH)] and [Ph3Sn(4-NO2BzH)] have been synthesized by the reactions of Ph3SnCl with potassium 4-nitrocinnamo hydroxamate [4-NO2C6H4CHCHCONHOK] (KHL1) and potassium 4-nitro benzohydroxamate [4-NO2C6H4CONHOK] (KHL2). The complexes were synthesized in 1:1 molar ratio in MeOH?+?C6H6 and characterized by physicochemical and IR, 1H NMR, and mass spectrometry. The bidentate hydroxamate involving bonding through carbonyl and hydroxamic oxygen (O, O coordination) has been inferred from IR spectra. The electrochemical behavior of complexes has been analyzed. Quasi-irreversible two electron metal-centered cathodic process of type SnIV/SnII redox couple was indicated by cyclic voltammetric technique. The thermal behavior of 1 and 2 studied by TGA has shown continuous decomposition to yield Sn + 0.5SnO2 and SnO2 as final residues. The in vitro antimicrobial activity assays of 1 and 2 against pathogenic Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), Gram-negative bacteria (Salmonella typhi and Pseudomonas aeruginosa), and fungi (Aspergillus fumigatus and Alternaria alternata) were done by MIC method. The complexes have exhibited appreciable antimicrobial activity relative to the respective standard Gentamycin and Nystatin drugs.  相似文献   

20.
Triorganotin(IV) complexes of the type Me3Sn[OC(R1):CH(CH3)C:NR2OH] and Ph3Sn[OC(R′):CH(CH3)C:NR″OH] (R′ = ─CH3, ─C6H5; R″ = ─(CH2)2─, ─(CH2)3─) have been synthesized by the reactions of trimethyl/phenyltin(IV) chloride with the sodium salt of corresponding Schiff base ligands in unimolar ratio in refluxing tetrahydrofuran. All these compounds have been characterized using elemental analyses and their probable structures have been proposed on the basis of infrared, 1H NMR, 13C NMR, 119Sn NMR and mass spectroscopic studies. In the trimethyltin(IV) derivatives the central tin atom is tetracoordinated, whereas in the analogous triphenyltin(IV)derivatives the central tin atom is pentacoordinated. All these ligands, metal precursors and corresponding triorganotin(IV) complexes have been screened for antimicrobial activities. A comparison of activities of the ligands and their corresponding triorganotin(IV) derivatives has been made. Attempts have also been made to relate the activity to the structure of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号