首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用微波法合成锂离子电池正极材料LiFePO4,并通过X射线衍射(XRD)、电子扫描电镜(SEM)和恒电流充放电实验,研究了在一定微波功率下合成出的材料的性能。结果表明,当含碳量在5%时,采用0.1C进行充放电,材料比容量可达126mAh/g,循环50次后,比容量仅下降10%,循环稳定性好。  相似文献   

2.
LiFePO4的制备、结构与电性能研究   总被引:1,自引:1,他引:0  
谢辉  周震涛 《电化学》2006,12(4):378-381
应用高速球磨-高温固相反应法于不同煅烧温度(400~700℃)下合成L iFePO4锂离子电池正极材料,X-射线衍射、扫描电镜和恒电流充放电等测试表明,煅烧温度对合成的L iFePO4晶体结构、表观形貌以及电化学性能均有很大影响;经600℃煅烧得到的L iFePO4样品具有良好的充放电性能,以0.1C倍率充放电,首次放电比容量为128.8 mAh/g,第15次放电比容量为129.1 mAh/g,充放电效率在99.7%以上;其高温充放电性能亦佳.  相似文献   

3.
LiNi_(0.8)Co_(0.2)O_2的络合法合成及其电化学性能研究   总被引:6,自引:0,他引:6  
采用络合法制备了锂离子电池的活性正极材料LiNi0.8Co0.2O2粉体,该合成材料结晶良好,层状结构发育完善.电池充放电测试表明,作为锂离子电池正极,其电化学性能与LiNi0.8Co0.2O2粉体的合成温度有关,其中以900℃下合成得到的材料性能最优:第1次放电比容量高达142mAh/g,循环30次后可逆比容量仍高达122mAh/g,容量损失为14.5%.文中对容量退化的原因进行了分析.  相似文献   

4.
采用化学法和物理法制备含P酚醛树脂热解炭材料,比较了不同的制备方法、不同的热解温度及不同的P含量对材料结构和性能的影响.结果表明:热解温度为600℃时化学法制备的掺杂20%磷酸的炭材料表现出良好的充放电性能.首次充放电比容量分别为1 200 mA.h.g1和628 mA.h.g1,循环10次时可逆比容量为420 mA.h.g1,比同样条件下未掺P炭材料可逆比容量提高13%.  相似文献   

5.
体相掺钇、铝的α-Ni(OH)2的固相合成和高温电化性能   总被引:2,自引:0,他引:2  
固相法合成含不同Y3 的铝基α-Ni(OH)2,样品的组成、晶相结构、表面形态等用XRD,SEM,FT-IR,AAS和CT等表征.用此材料组装成氢镍模拟电池.在不同温度下做了恒流充放电研究.结果表明,在30℃时Y3 使铝基α-Ni(OH)2电极材料的放电比容量稍有下降.而60℃时,在各实验倍率充放电情况下以掺Y(OH)3摩尔含量1.2%为合适比例,它比不掺钇的铝基α-Ni(OH)2放电比容量要高出17%~29%.高温放电电位也有所改善.对电极材料的高温性能改善的机制也做了探讨.  相似文献   

6.
研究了一种制备锂离子电池正极材料Li2FeSiO4的新方法. 采用机械球磨结合微波热处理合成了Li2FeSiO4正极材料. 通过XRD、SEM和恒流充放电测试, 对样品结构、形貌和电化学性能进行了表征和分析. 与传统固相法合成的材料在晶体结构、微观形貌以及充放电性能方面进行了比较. 结果表明, 微波合成法可以快速制备具有正交结构的Li2FeSiO4材料; 在650 ℃时处理12 min, 获得了纯度高、晶粒细小均匀的产物, 该产物具有较高的放电比容量和良好的循环性能. 在60 ℃下以C/20倍率(电流密度, 1C=160 mA·g-1)进行充放电, 首次放电容量为119.5 mAh·g-1, 10次循环后放电容量为116.2 mAh·g-1. 与传统高温固相法相比, 微波合成法制备的材料具有较高的纯度、均匀的形貌和较好的电化学性能.  相似文献   

7.
微波合成法制备锂离子电池正极材料Li2FeSiO4   总被引:4,自引:0,他引:4  
研究了一种制备锂离子电池正极材料Li2FeSiO4的新方法.采用机械球磨结合微波热处理合成了Li2FeSiO4正极材料.通过XRD、SEM和恒流充放电测试,对样品结构、形貌和电化学性能进行了表征和分析.与传统固相法合成的材料在晶体结构、微观形貌以及充放电性能方面进行了比较.结果表明,微波合成法可以快速制备具有正交结构的Li2FeSiO4材料;在650 ℃时处理12 min,获得了纯度高、晶粒细小均匀的产物,该产物具有较高的放电比容量和良好的循环性能.在60℃下以C/20倍率(电流密度,1C=160mA·g-1)进行充放电,首次放电容量为119.5 mAh·g-1,10次循环后放电容量为116.2 mAh·g-1.与传统高温固相法相比,微波合成法制备的材料具有较高的纯度、均匀的形貌和较好的电化学性能.  相似文献   

8.
通过控制结晶法制备类球形Ni_(0.9)Co_(0.05)Al_(0.03)Zr_(0.02)(OH))2前驱体,与LiOH·H_2O均匀混合后,在750℃下于氧气中进行高温焙烧,最终合成正极材料Li(Ni_(0.9)Co_(0.05)Al_(0.05))O_2。扫描电子显微镜(SEM)结果显示前驱体及正极材料具有良好的形貌;X射线衍射(XRD)表明材料具有规整的六方单相层状α-Na FeO_2结构;能谱仪(EDXS)分析表明Zr元素在材料颗粒内部呈均匀分布。合成的Ni_(0.9)Co_(0.05)Al_(0.03)Zr_(0.02)O_2正极材料具有良好的电化学性能,在25℃,2.8~4.3 V充放电条件下,0.2C首次放电比容量为221.5 m Ah·g-1,充放电效率90.3%,2C倍率充放电条件下容量仍达到192.7 m Ah·g-1,100周循环后的容量保持率为92.2%。在55℃,2.8~4.3 V的高温充放电条件下,该材料的0.2C首次放电比容量可达236.2 m Ah·g-1,2C充放电倍率下循环100周容量保持率为85.1%。  相似文献   

9.
溶胶凝胶法合成了层状的LiTiyV3-0.8yO8(y=0, 0.04, 0.06, 0.08)正极材料,这些材料因为掺杂Ti量的不同,而具有了不同的形貌特征(形状,粒径,比表面积)以及电化学性质(首次充放电容量, 循环容量等)。XRD,SEM, CV,及充放电测试对该正极材料的结构和电化学性能进行了表征,结果表明当y=0.04时,该正极材料拥有最高的首次放电容量(348.9mAhg-1)和最好的容量循环性能。  相似文献   

10.
以Li2CO3、MgO和TiO2为原料,采用高温固相法合成了具有尖晶石结构材料Li2MgTi3O8。采用X射线衍射(XRD)、傅里叶红外光谱(FTIR)等手段对材料的晶体结构进行了表征,材料的电化学性能通过恒流充放电、循环伏安(CV)进行测试。结果表明,材料具有优异的循环稳定性和良好的库伦效率。在室温下,充放电倍率为0.5C时,Li2MgTi3O8首次放电比容量为215.6mAh·g-1,100周循环后保持在225mAh·g-1。  相似文献   

11.
以LiAc,MnAc2和LaCl3为原料,通过高温固相两段烧结合成法制备了4种LiLaxMn2-xO4(Fx,x=0,0.02,0.04,0.06),其结构和形貌经XRD和SEM表征。结果表明,LiLa0.02Mn1.98O4(即F0.02)为纯尖晶石结构,表面形貌为球形。采用活性炭为导电剂制备了Fx的锂离子电池正极材料(Ex),并用循环伏安法研究了Ex的电化学性能。结果表明,E0.02在0.1 C倍率充放电时的首次放电容量为75 mAh·g-1;0.5 C倍率循环充放电时,放电比容量为79 mAh·g-1;经过20次0.2 C倍率循环充放电时,容量保持在80 mAh·g-1。  相似文献   

12.
本文利用共沉淀法制备了富锂材料xLi_2MnO_3·(1-x)LiNi_(0.5)Mn_(0.3)Co_(0.2)O_2(0.3≤x≤0.7),并进行了X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM)和恒电流充放电测试。研究了在一定的反应温度下合成出的材料的电化学性能。结果表明,Li_(1.17)Mn_(0.48)Ni_(0.25)Co_(0.1)O_2在0.1 C下的放电比容量为240.3m Ah·g~(-1),其在1 C倍率下100次循环后的比容量为180.6 m Ah·g~(-1),容量保持率为89.4%.  相似文献   

13.
镁离子掺杂对LiFePO4/C材料电池性能的影响   总被引:12,自引:0,他引:12  
通过PVA(聚乙烯醇)包覆工艺利用固相法合成了镁离子掺杂的LiFePO4/C.材料的高温电导率特征曲线和电阻率与掺杂含量变化的曲线表明,材料中由于Mg离子的掺杂,使得其导电机制由n型半导体向p型半导体转换.在镁离子掺杂原子百分含量为0.3%(x)下,研究了材料的结晶性能随烧成温度的变化.973 K下合成材料具有良好的微观结构,材料的亚微米颗粒和PVA裂解产生的碳黑形成了粒径在10 μm左右的团簇体.在循环伏安特性曲线中,存在两个小的肩峰,表明在循环过程中,锂离子可以通过由掺杂产生的锂空位进行插入和脱出.材料在0.1 C的充放电速率下,首次充放电曲线具有平稳的电压平台和较大的充放电容量.当充放电速率为0.5 C时,材料仍然具有大于120 mA•h•g-1的充放电容量;经过100次循环后,基本上没有发现材料的循环容量衰减的情况.  相似文献   

14.
以镍钴氢氧化物、异丙醇铝为原料,采用水解法合成三元前驱体Ni_(0.88)Co_(0.07)Al_(0.05)O_2,再与锂盐混合烧结得到正极材料(TEM)、X射线光电子能谱(XPS)、能量色散X射线谱(EDS)和恒电流充放电测试等对样品的晶体结构、微观形貌、元素价态以及电化学性能进行表征。研究表明,料液比1∶25、水洗3次、600℃回烧2 h合成的LiNi_(0.88)Co_(0.07)Al_(0.05)O_2具有较优的综合电化学性能,其在0.2C的放电比容量达207.6 mAh·g~(-1),首次充放电效率为84.8%,1C放电比容量为192.0 mAh·g~(-1),循环100周后,材料的放电比容量仍有148.0 mAh·g~(-1),容量保持率达到77.1%。  相似文献   

15.
使用玉米杆芯作为碳源, 通过沉积法原位合成生物质碳磷复合材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)和拉曼光谱(Raman)等对复合材料的形貌和结构进行表征, 通过恒电流充放电、 循环伏安(CV)和交流阻抗(EIS)等对复合材料的电化学性能进行了测试. 结果表明, 当碳/磷质量比为4.5∶5.5时, 复合材料具有最佳的电化学性能: 扣除非活性材料的贡献, 室温下首次充电容量为1215.5 mA·h/g, 循环100次后可以保持847.7 mA·h/g 的比容量. 该复合材料随着温度的升高充电比容量逐渐增加: -20 ℃时, 0.1C倍率下的充电比容量为425.6 mA·h/g; 55 ℃时, 首次充电比容量高达1812.3 mA·h/g. 说明适量纳米磷均匀分布在无定形碳导电基体的孔结构中, 可以使制备出的复合材料现出良好的电化学性能.  相似文献   

16.
石墨烯掺杂LiFePO4电极材料的合成及其电化学性能   总被引:2,自引:0,他引:2  
采用水热辅助法合成石墨烯改性的LiFePO4多孔微球电极材料.并对材料进行了X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),傅里叶变换红外(FT-IR)光谱,充放电等表征.从结果可以看出在2 mol·L-1LiNO3电解液体系中单纯包碳的LiFePO4微球在1C、50C倍率时的比容量分别为137、64 mAh·g-1,而石墨烯改性的LiFePO4微球的比容量分别为141、105 mAh·g-1,表现出较好的倍率特性.恒流循环充放电测试60次后两种材料容量保持率分别为70.2%、83.7%.说明掺杂石墨烯构成的三维导电网络能明显改善LiFePO4的电化学性能.  相似文献   

17.
用化学共沉淀法合成了A l掺杂N i(OH)2,用XRD表征了合成样品的结构特征:研究了合成样品的循环伏安性能,以及用A l掺杂N i(OH)2为正极活性物质的Zn/N i试验电池的充放电性能。研究结果表明:所合成的A l掺杂N i(OH)2为具有α-型晶体结构的材料,A l掺杂N i(OH)2具有优良的电化学可逆性、良好的充放电性能和较好的电化学循环性能;A l掺杂N i(OH)2作为正极活性物质的Zn/N i试验电池等250次充放电循环容量保持率130.1%,最高放电比容量为420.5mAh/g。  相似文献   

18.
采用溶胶凝胶法合成了锂离子电池正极材料层状锰酸锂(o-L iMnO2),并对其进行了N i2+掺杂改性研究,优化了层状L iMnO2的合成路径及制备条件.采用XRD、充放电实验和交流阻抗测试方法研究了N i2+的掺入对o-L iMnO2充放电容量的影响.结果表明N i2+的掺入明显提高了锰酸锂的放电比容量和循环性能,抑制了循环过程中电池阻抗的增加.  相似文献   

19.
液相法合成锂离子电池正极材料Li_(1+x)Mn_2O_4   总被引:11,自引:0,他引:11  
采用柠檬酸络合和溶液浸渍两种方法制备Li1+xMn2 O4正极材料 ,用XRD和BET测试了材料晶体结构和比表面积 ,考察焙烧温度、Li/Mn比、起始原料对产物结构和电化学性能的影响 ,结果表明 ,焙烧温度与Li/Mn比是影响材料电化学性能的关键因素 ,确定了制备Li1+xMn2 O4材料最佳条件为 0≤x≤ 0 .0 5 ,焙烧温度 75 0°C ,所得电池材料首次充放电容量达到 1 2 0mAh/g .循环 5 0次后 ,其充放电容量为 1 1 5mAh/g .  相似文献   

20.
1997年Padhi~([1])研究了锂过渡金属磷酸盐系材料的合成和电化学性能,发现这种聚阴离子体橄榄石型LiFePO_4在0.05 mA·cm~(-2)充放电电流密度下,约3.5 V(vs.Li~+/Li)平台电位范围内可以得到100~110 mAh·g~(-1)的比容量,(其理论比容量170 mAh·g~(-1)),己接近当时商品化正极材料LiCoO_2的实际放电比容量,而且充放电曲线非常平坦,这一发现引起国际电化学界不少研究人员的注意~([2,3]).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号