首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model of a porous medium consisting of randomly branching conical pores is used to investigate the quasistatic displacement of gas by a wetting liquid without application of an external pressure. Allowance is made for the circumstance that in the capillary process all the pores have at least one-sided permeability for the liquid phase. An expression is obtained that relates the residual gas saturation to the parameters which characterize the structure of the pores and the wetting properties of the system. Two new characteristics of the pore space are introduced — the branching parameter and the opening angle of the pores — and the influence of these parameters on the residual saturation is investigated. It is shown that for individual classes of natural media the residual gas saturation depends only on the porosity and the contact angle of wetting.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 128–133, September–October, 1981.  相似文献   

2.
We present a pore-scale network model of two- and three-phase flow in disordered porous media. The model reads three-dimensional pore networks representing the pore space in different porous materials. It simulates wide range of two- and three-phase pore-scale displacements in porous media with mixed-wet wettability. The networks are composed of pores and throats with circular and angular cross sections. The model allows the presence of multiple phases in each angular pore. It uses Helmholtz free energy balance and Mayer–Stowe–Princen (MSP) method to compute threshold capillary pressures for two- and three-phase displacements (fluid configuration changes) based on pore wettability, pore geometry, interfacial tension, and initial pore fluid occupancy. In particular, it generates thermodynamically consistent threshold capillary pressures for wetting and spreading fluid layers resulting from different displacement events. Threshold capillary pressure equations are presented for various possible fluid configuration changes. By solving the equations for the most favorable displacements, we show how threshold capillary pressures and final fluid configurations may vary with wettability, shape factor, and the maximum capillary pressure reached during preceding displacement processes. A new cusp pore fluid configuration is introduced to handle the connectivity of the intermediate wetting phase at low saturations and to improve model’s predictive capabilities. Based on energy balance and geometric equations, we show that, for instance, a gas-to-oil piston-like displacement in an angular pore can result in a pore fluid configuration with no oil, with oil layers, or with oil cusps. Oil layers can then collapse to form cusps. Cusps can shrink and disappear leaving no oil behind. Different displacement mechanisms for layer and cusp formation and collapse based on the MSP analysis are implemented in the model. We introduce four different layer collapse rules. A selected collapse rule may generate different corner configuration depending on fluid occupancies of the neighboring elements and capillary pressures. A new methodology based on the MSP method is introduced to handle newly created gas/water interfaces that eliminates inconsistencies in relation between capillary pressures and pore fluid occupancies. Minimization of Helmholtz free energy for each relevant displacement enables the model to accurately determine the most favorable displacement, and hence, improve its predictive capabilities for relative permeabilities, capillary pressures, and residual saturations. The results indicate that absence of oil cusps and the previously used geometric criterion for the collapse of oil layers could yield lower residual oil saturations than the experimentally measured values in two- and three-phase systems.  相似文献   

3.
A parametric two-phase, oil–water relative permeability/capillary pressure model for petroleum engineering and environmental applications is developed for porous media in which the smaller pores are strongly water-wet and the larger pores tend to be intermediate- or oil-wet. A saturation index, which can vary from 0 to 1, is used to distinguish those pores that are strongly water-wet from those that have intermediate- or oil-wet characteristics. The capillary pressure submodel is capable of describing main-drainage and hysteretic saturation-path saturations for positive and negative oil–water capillary pressures. At high oil–water capillary pressures, an asymptote is approached as the water saturation approaches the residual water saturation. At low oil–water capillary pressures (i.e. negative), another asymptote is approached as the oil saturation approaches the residual oil saturation. Hysteresis in capillary pressure relations, including water entrapment, is modeled. Relative permeabilities are predicted using parameters that describe main-drainage capillary pressure relations and accounting for how water and oil are distributed throughout the pore spaces of a porous medium with mixed wettability. The capillary pressure submodel is tested against published experimental data, and an example of how to use the relative permeability/capillary pressure model for a hypothetical saturation-path scenario involving several imbibition and drainage paths is given. Features of the model are also explained. Results suggest that the proposed model is capable of predicting relative permeability/capillary pressure characteristics of porous media mixed wettability.  相似文献   

4.
Quasi-static rule-based network models used to calculate capillary dominated multi-phase transport properties in porous media employ equilibrium fluid saturation distributions which assume that pores are fully filled with a single bulk fluid with other fluids present only as wetting and/or spreading films. We show that for drainage dominated three-phase displacements in which a non-wetting fluid (gas) displaces a trapped intermediate fluid (residual oil) in the presence of a mobile wetting fluid (water) this assumption distorts the dynamics of three-phase displacements and results in significant volume errors for the intermediate fluid and erroneous calculations of intermediate fluid residual saturations, relative permeabilities and recoveries. The volume errors are associated with the double drainage mechanism which is responsible for the mobilization of waterflood residual oil. A simple modification of the double drainage mechanism is proposed which allows the presence of a relatively small number of partially filled pores and removes the oil volume errors.  相似文献   

5.
Considering the separable phenomena of imbibition in complex fine porous media as a function of timescale, it is noted that there are two discrete imbibition rate regimes when expressed in the Lucas–Washburn (L–W) equation. Commonly, to account for this deviation from the single equivalent hydraulic capillary, experimentalists propose an effective contact angle change. In this work, we consider rather the general term of the Wilhelmy wetting force regarding the wetting line length, and apply a proposed increase in the liquid–solid contact line and wetting force provided by the introduction of surface meso/nanoscale structure to the pore wall roughness. An experimental surface pore wall feature size regarding the rugosity area is determined by means of capillary condensation during nitrogen gas sorption in a ground calcium carbonate tablet compact. On this nano size scale, a fractal structure of pore wall is proposed to characterize for the internal rugosity of the porous medium. Comparative models based on the Lucas–Washburn and Bosanquet inertial absorption equations, respectively, for the short timescale imbibition are constructed by applying the extended wetting line length and wetting force to the equivalent hydraulic capillary observed at the long timescale imbibition. The results comparing the models adopting the fractal structure with experimental imbibition rate suggest that the L–W equation at the short timescale cannot match experiment, but that the inertial plug flow in the Bosanquet equation matches the experimental results very well. If the fractal structure can be supported in nature, then this stresses the role of the inertial term in the initial stage of imbibition. Relaxation to a smooth-walled capillary then takes place over the longer timescale as the surface rugosity wetting is overwhelmed by the pore condensation and film flow of the liquid ahead of the bulk wetting front, and thus to a smooth walled capillary undergoing permeation viscosity-controlled flow.  相似文献   

6.
Pore network analysis is used to investigate the effects of microscopic parameters of the pore structure such as pore geometry, pore-size distribution, pore space topology and fractal roughness porosity on resistivity index curves of strongly water-wet porous media. The pore structure is represented by a three-dimensional network of lamellar capillary tubes with fractal roughness features along their pore-walls. Oil-water drainage (conventional porous plate method) is simulated with a bond percolation-and-fractal roughness model without trapping of wetting fluid. The resistivity index, saturation exponent and capillary pressure are expressed as approximate functions of the pore network parameters by adopting some simplifying assumptions and using effective medium approximation, universal scaling laws of percolation theory and fractal geometry. Some new phenomenological models of resistivity index curves of porous media are derived. Finally, the eventual changes of resistivity index caused by the permanent entrapment of wetting fluid in the pore network are also studied.Resistivity index and saturation exponent are decreasing functions of the degree of correlation between pore volume and pore size as well as the width of the pore size distribution, whereas they are independent on the mean pore size. At low water saturations, the saturation exponent decreases or increases for pore systems of low or high fractal roughness porosity respectively, and obtains finite values only when the wetting fluid is not trapped in the pore network. The dependence of saturation exponent on water saturation weakens for strong correlation between pore volume and pore size, high network connectivity, medium pore-wall roughness porosity and medium width of the pore size distribution. The resistivity index can be described succesfully by generalized 3-parameter power functions of water saturation where the parameter values are related closely with the geometrical, topological and fractal properties of the pore structure.  相似文献   

7.
The immiscible displacement of a wetting fluid by a non-wetting one in heterogeneous porous media is modeled using a multi-scale network-type analysis: (1) The pressure-controlled immiscible displacement of water by oil in pore-and-throat networks (1st length scale ~ 1?mm) is simulated as a capillary-driven process. (2) The pressure-controlled immiscible displacement in uncorrelated cubic lattices (2nd length scale ~ 1?cm) is simulated as a site percolation process governed by capillary and gravity forces. At this scale, each node represents a network of the previous scale. (3) The rate-controlled immiscible displacement of water by oil in cubic networks (3rd length scale ~ 10?cm), where each node represents a lattice of the previous scale, is simulated by accounting for capillary, gravity, and viscous forces. The multi-scale approach along with the information concerning the pore structure properties of the porous medium can be employed to determine the transient responses of the pressure drop and axial distribution of water saturation, and estimate the effective (up-scaled) relative permeability functions. The method is demonstrated with application to data of highly heterogeneous soils.  相似文献   

8.
This work is devoted to modeling the evolution of the homogenized solute diffusion coefficient within unsaturated granular materials by means of micromechanics approach. On the basis of its distinct role in solute diffusion, the liquid water within unsaturated granular materials is distinguished into four types, namely intergranular layer (interconnected capillary water), isolated capillary water, wetting layer and water film. Application on two sands shows the capability of the model to accurately reproduce the experimental results. When saturation degree is higher than the residual saturation degree Srr, the evolution of homogenized solute diffusion coefficient with respect to the saturation degree depends significantly on the connectivity of the capillary water. Below Srr, depending on the connectivity of the wetting layer, the homogenized solute diffusion coefficient within unsaturated sands decreases by 2–6 orders of magnitude with respect to that in bulk liquid water. The upper bound of the solute diffusion coefficient contributed by the water films is 4–6 orders of magnitude lower than that in bulk liquid water.  相似文献   

9.
Most clastic reservoirs display an intermediate type of wettability. Intermediate wettability covers several local wetting configurations like fractional wet and mixed-wet where the oil-wet sites could either be in the large or smaller pores. Clastic reservoirs show a large variation in fluid flow properties. A classical invasion–percolation network simulator is used to investigate properties of different intermediate wet situations. Variation in wetting properties like contact angles, process dependent contact angles, contact angle distribution, and fraction of oil wet sites are investigated. The fluid flow properties analysed in particular are residual oil saturation and normalized endpoint relative permeability. Results from network modelling have been compared to reservoir core analysis data. The network models applied are at the capillary limit, while the core flood results are clearly viscous influenced. Even though network modelling does not cover all the physics involved in fluid displacement processes, results show that data from simulations are sufficient to present trends in fluid flow properties which are comparable to experimental data.  相似文献   

10.
本文用奇异摄动法结合正则摄动法求解了考虑毛管力因素时多孔介质中弱非牛顿流体的两相驱替问题,得到了分流函数和湿相饱和度的渐近解析解。所得结果同数值解和经典的牛顿流体两相渗流结果进行了比较,并着重讨论了非牛顿因素的影响。  相似文献   

11.
Pore Scale Modeling of Rate Effects in Imbibition   总被引:3,自引:0,他引:3  
We use pore scale network modeling to study the effects of flow rate and contact angle on imbibition relative permeabilities. The model accounts for flow in wetting layers that occupy roughness or crevices in the pore space. Viscous forces are accounted for by solving for the wetting phase pressure and assuming a fixed conductance in wetting layers. Three-dimensional simulations model granular media, whereas two-dimensional runs represent fracture flow.We identify five generic types of displacement pattern as we vary capillary number, contact angle, and initial wetting phase saturation: flat frontal advance, dendritic frontal advance, bond percolation, compact cluster growth, and ramified cluster growth. Using phase diagrams we quantify the range of physical properties under which each regime is observed. The work explains apparently inconsistent experimental measurements of relative permeability in granular media and fractures.  相似文献   

12.
A linear isothermal dynamic model for a porous medium saturated by two immiscible fluids is developed in the paper. In contrast to the mixture theory, phase separation is avoided by introducing one energy for the porous medium. It is an important advantage of the model based on one energy approach that it can account for the couplings between the phases. The volume fraction of each phase is characterized by the porosity of the porous medium and the saturation of the wetting phase. The mass and momentum balance equations are constructed according to the generalized mixture theory. Constitutive relations for the stress, pore pressure are derived from the free energy function. A capillary pressure relaxation model characterizing one attenuation mechanism of the two-fluid saturated porous medium is introduced under the constraint of the entropy inequality. In order to describe the momentum interaction between the fluids and the solid, a frequency independent drag force model is introduced. The details of parameter estimation are discussed in the paper. It is demonstrated that all the material parameters in our model can be calculated by the phenomenological parameters, which are measurable. The equations of motion in the frequency domain are obtained in terms of the Fourier transformation. In terms of the equations of motion in the frequency domain, the wave velocities and the attenuations for three P waves and one S wave are calculated. The influences of the capillary pressure relaxation coefficient and the saturation of the wetting phase on the velocities and attenuation coefficients for the four wave modes are discussed in the numerical examples.  相似文献   

13.
An interacting capillary bundle model is developed for analysing immiscible displacement processes in porous media. In this model, pressure equilibration among the capillaries is stipulated and capillary forces are included. This feature makes the model entirely different from the traditional tube bundle models in which fluids in different capillaries are independent of each other. In this work, displacements of a non-wetting phase by a wetting phase at different injection rates were analysed using the interacting capillary bundle model. The predicted evolutions of saturation profiles were consistent with both numerical simulation and experimental results for porous media reported in literature which cannot be re-produced with the non-interacting tube bundle models.  相似文献   

14.
Three-phase flow is a key process occurring in subsurface reservoirs, for example, during $\text{ CO }_2$ sequestration and enhanced oil recovery techniques such as water alternating gas (WAG) injection. Predicting three-phase flow processes, for example, the increase in oil recovery during WAG, requires a sound understanding of the fundamental flow physics in water- to oil-wet rocks to derive physically robust flow functions, i.e. relative permeability and capillary pressure. In this study, we use pore-network modelling, a reliable and physically based simulation tool, to predict the flow functions. We have developed a new pore-scale network model for rocks with variable wettability, from water- to oil-wet. It comprises a constrained set of parameters that mimic the wetting state of a reservoir. Unlike other models, it combines three main features: (1) A novel thermodynamic criterion for formation and collapse of oil layers. The new model hence captures wetting film and layer flow of oil adequately, which affects the oil relative permeability at low oil saturation and leads to accurate prediction of residual oil. (2) Multiple displacement chains, where injection of one phase at the inlet triggers a chain of interface displacements throughout the network. This allows for the accurate modelling of the mobilisation of many disconnected phase clusters that arise, in particular, during higher order WAG floods. (3) The model takes realistic 3D pore-networks extracted from pore-space reconstruction methods and CT images as input, preserving both topology and pore shape of the sample. For water-wet systems, we have validated our model with available experimental data from core floods. For oil-wet systems, we validated our network model by comparing 2D network simulations with published data from WAG floods in oil-wet micromodels. This demonstrates the importance of film and layer flow for the continuity of the various phases during subsequent WAG cycles and for the residual oil saturations. A sensitivity analysis has been carried out with the full 3D model to predict three-phase relative permeabilities and residual oil saturations for WAG cycles under various wetting conditions with different flood end-points.  相似文献   

15.
We have developed a Dynamic Pore-network model for Simulating Two-phase flow in porous media (DYPOSIT). The model is applicable to both drainage and imbibition processes. Employing improved numerical and geometrical features in the model facilitate a physically-based pore-scale simulator. This computational tool is employed to perform several numerical experiments (primary and main drainage, main imbibition) to investigate the current capillarity theory. Traditional two-phase flow formulations state that the pressure difference between the two phase is equal to the capillary pressure, which is assumed to be a function of saturation only. Many theoretical and experimental studies have shown that this assumption is invalid and the pressure difference between the two fluids is not only equal to the capillary pressure but is also related to the variation of saturation with time in the domain; this is referred to as the non-equilibrium capillarity effect. To date, non-equilibrium capillarity effect has been investigated mainly under drainage. In this study, we analyze the non-equilibrium capillarity theory under drainage and imbibition as a function of saturation, viscosity ratio, and effective viscosity. Other aspects of the dynamics of two-phase flow such as trapping and saturation profile are also studied.  相似文献   

16.
Low Tension Polymer Flooding or Polymer Assisted Dilute Surfactant Flooding is generally deployed as a method to produce additional oil trapped in oil reservoirs after waterflooding. Fundamental study of microscopic mechanisms and pore-level phenomena in Polymer Assisted Dilute Surfactant Flooding needs more investigation. Of particular concern and interest is to probe into and document the effect of pore morphology and structure on microscopic phenomena occurring at pore level. No previous works on the effect of pore morphology in Polymer Assisted Dilute Surfactant Flooding has been reported in the literature. In this study, one-quarter five-spot glass micromodels were deployed to examine the effect of porous media morphology and structure on microscopic mechanisms as well as macroscopic behavior of Polymer Assisted Dilute Surfactant Flooding. Four types of pore morphologies were employed to study this factor. Results show that the pore geometric properties in a porous medium will dictate the degree of displacement front instability, capillary imbalance, viscous fingering, wetting characteristics and its distribution, and finally magnitude of ultimate oil recovery. We also found that the formation of flow scheme is dramatically influenced by the pre-designed injection scheme.  相似文献   

17.
In this article, the numerical simulations for one-dimensional three-phase flows in fractured porous media are implemented. The simulation results show that oil displacement in matrix is dominated by oil–water capillary pressure only under certain conditions. When conditions are changed to decrease the amount of water entering into the fractured media from the boundary of the flow field, water in fracture may be vaporized to superheated steam. In these cases, the appearance of superheated steam in fracture rather than in matrix will decrease the fracture pressure and generate the pressure difference between matrix and fracture, which results in oil flowing from matrix to fracture. Assuming that oil is wetting to steam, the matrix steam–oil capillary pressure will decrease the matrix oil-phase pressure as the matrix steam saturation increases. After the steam–oil capillary pressure finally exceeds the pressure difference due to the appearance of superheated steam in fracture, the oil displacement in matrix will stop. It is also shown that variations of the water relative permeability curve in matrix do not result in different mechanisms for oil displacement in matrix. The simulation results suggest that the amount of liquid water supply from the boundary of flow field fundamentally influence the mechanisms for oil displacement in matrix.  相似文献   

18.
The analytical equations for calculating two-phase flow, including local capillary pressures, are developed for the bundle of parallel capillary tubes model. The flow equations that are derived were used to calculate dynamic immiscible displacements of oil by water under the constraint of a constant overall pressure drop across the tube bundle. Expressions for averaged fluid pressure gradients and total flow rates are developed, and relative permeabilities are calculated directly from the two-phase form of Darcy's law. The effects of pressure drop and viscosity ratio on the relative permeabilities are discussed. Capillary pressure as a function of water saturation was delineated for several cases and compared to a steady-state mercury-injection drainage type of capillary pressure profile. The bundle of serial tubes model (a model containing tubes whose diameters change randomly at periodic intervals along the direction of flow), including local Young-Laplace capillary pressures, was analyzed with respect to obtaining relative permeabilities and macroscopic capillary pressures. Relative permeabilities for the bundle of parallel tubes model were seen to be significantly affected by altering the overall pressure drop and the viscosity ratio; relative permeabilities for the bundle of serial tubes were seen to be relatively insensitive to viscosity ratio and pressure, and were consistently X-like in profile. This work also considers the standard Leverett (1941) type of capillary pressure versus saturation profile, where drainage of a wetting phase is completed in a step-wise steady fashion; it was delineated for both tube bundle models. Although the expected increase in capillary pressure at low wetting-phase saturation was produced, comparison of the primary-drainage capillary pressure curves with the pseudo-capillary pressure profiles, that are computed directly using the averaged pressures during the displacements, revealed inconsistencies between the two definitions of capillary pressure.  相似文献   

19.
We use the model described in Zolfaghari and Piri (Transp Porous Media, 2016) to predict two- and three-phase relative permeabilities and residual saturations for different saturation histories. The results are rigorously validated against their experimentally measured counterparts available in the literature. We show the relevance of thermodynamically consistent threshold capillary pressures and presence of oil cusps for significantly improving the predictive capabilities of the model at low oil saturations. We study systems with wetting and spreading oil layers and cusps. Three independent experimental data sets representing different rock samples and fluid systems are investigated in this work. Different disordered networks are used to represent the pore spaces in which different sets of experiments were performed, i.e., Berea, Bentheimer, and reservoir sandstones. All three-phase equilibrium interfacial tensions used for the simulation of three-phase experimental data are measured and used in the model’s validation. We use a fixed set of parameters, i.e., the input network (to represent the pore space) and contact angles (to represent the wettability state), for all experiments belonging to a data set. Incorporation of the MSP method for capillary pressure calculations and cusp analysis significantly improves the agreement between the model’s predictions of relative permeabilities and residual oil saturations with experimental data.  相似文献   

20.
A fuel pollutant migrating in a water flow throughout a porous medium is distributed between the moving (continuous) and residual (discontinuous) phases. Usually, there is an equilibrium condition between these phases. In this study, the migration of a fuel slug confied within free boundaries moving in the porous medium is considered. This type of fuel migration pertains to circumstances in which convective fuel transport dominates fuel dispersion when fuel saturation approaches zero. A one-dimensional self-similar model is developed, describing the movement of fuel saturation fronts in a porous medium against and with the water flow direction. Several analytical solutions are found revealing the effects of the pore size, fuel viscosity, fuel mass, and the capillary number on the fuel migration in the porous medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号